Cryptanalysis of the Revised NTRU Signature
Scheme

Craig Gentry! and Mike Szydlo?

1 DoCoMo USA Labs, San Jose, CA, USA
cgentry@docomolabs-usa.com
2 RSA Laboratories, Bedford, MA, USA
mszydlo@rsasecurity.com

Keywords: NSS, NTRU, NTRUSign, Signature Scheme, Lattice Reduction,
Cryptanalysis, Orthogonal Lattice, Cyclotomic Integer, Galois Congruence.

Abstract. In this paper, we describe a three-stage attack against Re-
vised NSS, an NTRU-based signature scheme proposed at the Eurocrypt
2001 conference as an enhancement of the (broken) proceedings version
of the scheme. The first stage, which typically uses a transcript of only
4 signatures, effectively cuts the key length in half while completely
avoiding the intended hard lattice problem. After an empirically fast
second stage, the third stage of the attack combines lattice-based and
congruence-based methods in a novel way to recover the private key in
polynomial time. This cryptanalysis shows that a passive adversary ob-
serving only a few valid signatures can recover the signer’s entire private
key. We also briefly address the security of NTRUSign, another NTRU-
based signature scheme that was recently proposed at the rump session
of Asiacrypt 2001. As we explain, some of our attacks on Revised NSS
may be extended to NTRUSign, but a much longer transcript is neces-
sary. We also indicate how the security of NTRUSign is based on the
hardness of several problems, not solely on the hardness of the usual
NTRU lattice problem.

1 Introduction

The Revised NTRU Signature Scheme (R-NSS) and “NTRUSign” are the two
most recent of several signature schemes related to the NTRU encryption scheme
(now called NTRUEncrypt). NTRUEncrypt and the related signature schemes
are not based on traditional hard problems such as factoring or computing dis-
crete logarithms, like much of today’s cryptography. Instead, NTRUEncrypt was
originally conceived as a cryptosystem based on polynomial arithmetic. Based
on an early attack found by Coppersmith and Shamir [7], however, the under-
lying hard problem was soon reformulated as a lattice problem. See [22] for an
update on how lattices have recently been used both as a cryptanalytic tool and
as a potential basis for cryptography.

There are two reasons for seeking alternative hard problems on which cryp-
tography may be based. First, it is prudent to hedge against the risk of potential

breakthroughs in factoring and computing discrete logarithms. A second and
more significant reason is efficiency. NTRU-based algorithms, for example, are
touted to run hundreds of times faster while providing the same security as com-
peting algorithms. The drawback in using alternative hard problems is that they
may not be as well understood. Although lattice theory has been studied for over
100 years,! the algorithmic nature of hard lattice problems such the “shortest
vector problem” (SVP) was not really studied intensively until Lenstra, Lenstra
and Lovasz discovered a polynomial-time lattice basis reduction algorithm in
1982. Moreover, NTRU-based schemes use specific types of lattices based on
an underlying polynomial ring, and these lattices generate specific types of lat-
tice problems that may be easier to solve than general lattice problems. Since
these specific lattice problems have been studied intensively only since NTRU-
Encrypt’s introduction in 1996, we can expect plenty of new results. This paper
is a case in point: we use a new polynomial-time algorithm to find the shortest
vector in certain lattices that arise in R-NSS, allowing us to break the scheme.

1.1 History of NTRU-based Signature Schemes

Since the invention of NTRUEncrypt in 1996, several related identification and
signature schemes have been proposed. In 1997, Hoffstein, Kaliski, et.al. filed
a patent for an identification scheme based on constrained polynomials [12],
although the scheme was later determined not to be secure. A “preliminary”
version of NSS was first presented at the rump session of Crypto 2000, but
this scheme was observed by its authors to be insecure at an early stage and
by Mironov [21] independently a few months later. Essentially, the signatures
leaked information about the private key, which was revealed by a straightfor-
ward averaging attack.

Certain adaptations were made to eliminate the disclosed weaknesses, yield-
ing the scheme described in the proceedings of Eurocrypt 2001 [17]. (See also
[16] and [4].) Even so, these signatures still leaked information about the private
key: specifically, correlations between certain coefficients in the signature and
the private key were sufficient to recover the entire public key. Moreover, the
scheme was susceptible to a simple direct forgery attack through which an at-
tacker could quickly sign arbitrary messages without even having to see a single
legitimate signature. These forgery and key recovery attacks were presented by
Gentry, Jonsson, Stern and Szydlo at the rump session of Eurocrypt 2001, the
same conference where NSS was to be first fully presented, and were further
described in an Asiacrypt 2001 paper [9]. They render the scheme as presented
in [17], [16] and [4] completely insecure.

Informed of the attacks prior to the conference, the authors of NSS sketched a
revised scheme in their Eurocrypt presentation. They described these revisions
in more detail in a technical note entitled “Enhanced Encoding and Verifica-
tion Methods for the NTRU Signature Scheme” [14], which was revised sev-
eral months later [15]. They finally committed to a scheme, which we will call

! This includes early work by Hermite and Minkowski, the latter calling the topic
“Geometrie der Zahlen” (Geometry of Numbers) in 1910.

“R-~-NSS,” by publishing it in the preliminary cryptographic standard document
EESS [5]. They also published analysis and research showing how the new scheme
defeated previous attacks. Although R-NSS does indeed appear to be a signifi-
cantly stronger scheme than previous versions, this paper describes how it can
be broken.

Since the initial submission of this paper, NTRU has proposed a new NTRU-
based signature scheme called NTRUSign. Although our primary focus is R-NSS,
we also provide security analysis of NTRUSign, as requested by the Program
Committee.

1.2 Our Cryptanalysis

In our cryptanalysis of R-NSS, we use for concreteness the parameters suggested
in the technical note [15] and standards document [5]. We show how a passive
adversary who observes only a few valid signatures can recover the signer’s en-
tire private key. Although some might consider R-NSS to be even more ad hoc
than previous NTRU-based signature schemes, our attacks against it are more
fundamental than previous attacks, in that they target the basic tenets of the
scheme rather than its peculiarities.

The rest of this paper is organized as follows: In Section 2, we provide back-
ground mathematics, and then in Section 3, we describe R-NSS. In Section 4,
we survey the previous attacks on NTRU-based signature schemes that are rele-
vant to our cryptanalysis of R-NSS. In Section 5, we detail the first stage of our
attack: the lifting procedure. Next, in Section 6, we describe how to obtain the
polynomial f * f, which we use in the final stage of the attack. In Section 7, we
introduce novel techniques for circulant lattices which enable a surprising algo-
rithm to obtain the private key f in polynomial time. We give a summary of our
R-NSS cryptanalysis in Section 8. Finally, in Section 9, we describe NTRUSign,
consider attacks against it and describe alternative hard problems that underlie
its security.

2 Background Mathematics

As with NTRUEncrypt and previous NTRU-based signature schemes, the key
underlying structure of R-NSS is the polynomial ring

R=Z[X]/(XY - 1) (1)

where N is a prime integer (e.g., 251) in practice. In some steps, R-NSS uses the
quotient ring R, = Z4[X]/(X"Y — 1), where the coefficients are reduced modulo
q, and normally taken in the range (—q/2, ¢/2], where ¢ is typically a power of
2 (e.g., 128).

Multiplication in R is similar to ordinary polynomial multiplication, but sub-
ject to the relations XV*+* = X% for any & > 0. This means that the coef-
ficient of X% in the product a * b of ¢ = ag + a1 X + ... + ay_1 XV~ and

b=by+ b X +...+by_1 XN 1is

(@xb)p= > abj. (2)

i+j=k mod N

The multiplication of two polynomials in R is also called the convolution prod-
uct of the two polynomials. To any polynomial a¢ € R, it is also convenient to
associate a convolution matriz to a as follows: Let M, be the N x N circulant

matrix indexed by {0,..., N — 1}, where the element on position (i, j) is equal
t0 a(j—i) mod - The product of a and b can also be expressed as the product
of the row vector (ag,...,any—1) with the matrix M. Any polynomial in R or

R, can be naturally associated with a row vector in this way, and we make this
identification throughout the paper. We also use this identification to define the
Euclidean norm of a polynomial:

£l =/ f2. (3)

At times, we will refer to the reversal @ of a polynomial a, defined by
ar = an—k (with @y = ap). The mapping a +— @ is an automorphism of R,
since applying the map twice yields the original polynomial. We use the term
“palindromes” in referring to polynomials that are fixed under the reversal map-
ping on R — i.e., polynomials a such that a = @. For any a € R, it is easy to see
that the product ax@ is a palindrome. This fact, as well as the reversal mapping,
may be described in elementary terms, but also in terms of an automorphism of
the underlying cyclotomic field Q({x). We refer the reader to Appendix D for
further details on the Galois theory of R and Q((n).

2.1 Lattices

The analysis of R-NSS will make frequent use of lattices. Formally, a lattice is a
discrete subgroup of a vector space, but concretely, a lattice may be presented as
the integral span of some set B = {by, . ..,b;,—1} of linearly independent vectors
in RY - that is,

L={vlv=> aib|acZ}. (4)

We call m the dimension of the lattice, and B a basis of L. Bases will often be
presented as a matrix in which the rows are the basis vectors {b;}. Each lattice
has an infinite number of bases, related by B’ = UB where U is a unimodular
matrix, but some bases are more useful than others. The goal of lattice reduction
is to find useful bases, typically ones with reasonably short, reasonably orthog-
onal basis vectors. The most celebrated lattice reduction algorithm is LLL [19],
which has found many uses in cryptology. The contemporary survey [22] pro-
vides an overview of lattice techniques and [2] provides detailed descriptions of
LLL variants.

The most famous lattice problem is the shortest vector problem (SVP): given
a basis of a lattice L, find the shortest nonzero vector in L. Although LLL

and its variants manage to find somewhat short vectors in lattices, they do not
necessarily find the shortest vector. In fact, SVP is an NP-hard problem (under
randomized reductions) [1]. In previous cryptanalysis of NTRU and NSS, LLL’s
inability to recover the shortest (or a very, very short) vector was a significant
shortcoming. In some of our attacks, however, we will construct lattices in which
even vectors that are only somewhat short reveal information about the signer’s
private key, and then we will use LLL and its variants as black box algorithms to
find these vectors. We will explain other aspects of lattice theory as they become
relevant.

2.2 Ideals

Since R-NSS operates with polynomials in the ring R, we will need to consider
multiplication in R, as well as ideals in this ring. Recall that an ideal is an additive
subgroup of a commutative ring which is also closed under multiplication by any
element in R, and a principal ideal is an ideal of R consisting of all R-multiples
of a single element. We write (a) to denote the principal ideal consisting of all
R-multiples of a, and say that the ideal is generated by a. We remark that not
all ideals are principal, and furthermore, a generator of a principal ideal is not
unique since there are infinitely many units v € R, and for each u, both My and
My define the same ideal. We naturally extend these notions to lattices by
defining a lattice ideal to be a lattice which is also closed under “multiplication”
by polynomials in R, and a principal ideal to be a lattice which consists of all
R-multiples of a given polynomial. Consider, for example, the lattice L(M,)
generated by the circulant matrix M,. Since the rows of M, correspond to the
various “rotations” a* X of the element a, every possible a-multiple in R is in
the lattice L(M,). Indeed, L(M,) is precisely the lattice equivalent of the ideal
(a). In this paper, we refer to these special lattices and ideals interchangeably.

In general, lattices are only closed under addition, and if multiplication is even
defined, there is no guarantee that the product of two vectors will be another
element of R that is also in the lattice. However, lattices corresponding to ideals
in R do have this property. The algebraic structure of ideals is richer than that
of general lattices, and we will exploit this extra structure in our novel attacks
on R-NSS.

3 Description of R-NSS

The signature scheme R-NSS is a triplet (keygen, sign, verify) of algorithms
operating on polynomials in R = Z[X]/(XY — 1) and R, = Z,[X]/(XY — 1),
where N is prime, and ¢ < N, (e.g. N = 251, ¢ = 128). Other parameters in
R-NSS include the modulus p, which is relatively prime to ¢ and is typically
chosen to be 3, as well as the integers d,,, df, dg4, d,, and d,, whose suggested
values are respectively 88, 52, 36, 80, and 58. The latter parameters are used
to define several families of ¢rinary polynomials as follows: £(d1,ds) denotes the
set of polynomials in R, with d; coefficients 1, do coefficients —1 and all other
coefficients 0.

Key generation: Two polynomials f and g are randomly generated according
to the equations

f=u+phf
g =u-+Dpg1

where u € L(dy,dy + 1), f1 € L(dy,dys) and g1 € L(dg,dy). The signer keeps
these two polynomials secret, with f serving as the signer’s private key. The
public key h is computed as f~! * g in R, and it is therefore necessary that f
be invertible in R, (i.e., f* f~! =1 for some f~! € R,). This is true with very
high probability (see [24]); in any case the preceding step may be repeated by
choosing a different polynomial f;.

As in previous versions of NSS, the coefficients of f and g are small — i.e., they
lie in a narrow range ([—4, 4] assuming p = 3) of Z,. However, R-NSS introduces
a new secret polynomial — namely, u — into the private key generation process.
In the previous version of NSS, f (mod p) and g (mod p) were public, allowing a
statistical attack on a transcript of signatures. In Appendix B, we briefly describe
this transcript attack, and explain how using u defeats it.

Signature generation: To sign a message, one transforms the message to be
signed into a message representative according to a hash function-based proce-
dure such as that described in [4]. We do not base any attack on this encoding,
which can be made as safe as for any signature scheme. This message represen-
tative m is a polynomial in £(d,,, d,,). The signer then computes the following
temporary variables:

y=u"'*mmodp

z € L(d;,d,)
w=y+pz,

where u~! is computed in R, = Z,[X]/(X"™ — 1). Notice that in R, f*w =m
(mod p). This is not necessarily the case in R, however, since reduction modulo ¢
causes “deviations” in the modulo p congruence, given that p and ¢ are relatively
prime. During the rest of the signing process, the signer will try to keep the
number of these deviations to a minimum. The signer computes more temporary
variables:

s = f*w mod g

t=g+*wmodq
Devs = (s —m) mod p
Devy = (t —m) mod p .

Dev, and Dev; represent the deviations that the signer would like to correct, but,
unfortunately for the signer, correcting a coefficient in s may cause additional
deviations in ¢. Therefore, the signer limits his corrections to coefficient positions
j such that (Devy); = (Dev;);. He initializes a polynomial e to 0 and sets e; to
—(Devy); when (Devy); = (Devy);. He then lets e/ = u™! * e (mod p), adds ¢’

to w, and recomputes s = f * w in R,. The pair (m, s) is the signer’s signature
of m.

The signing procedure above is not very intuitive, so we will pause at this
point and try to explain the motivation behind it. The signer knows a pair of
polynomials (f,g) satisfying f * h = g in R, where the coefficients of f and g
lie in a very narrow range (e.g., [—4,4]) of (—¢/2,¢/2]. An attacker can easily
generate polynomials (a, b) satisfying a «* h = b in R, but the L2-norm of (a||b)
(concatenated) will likely be much more than the L2-norm of (f||g). The point
of the signing procedure is to give the signer a way of proving that he knows
a short solution (a,b) to a*x h = b in R,. Here is the essential approach: the
signer (or forger) must produce a pair of polynomials (s,t) with coefficients in
(—q/2,q/2] that simultaneously satisfies s * h = t (mod ¢) as well as s & m
(mod p) and ¢t ~ m (mod p) where “~” means that there are a small number
of “deviations.” For the legitimate signer, this is easy: he can, for example, set
w € R, (coefficients in {—1,0,1}) to be u™! xm and let s = f *w (mod ¢) and
t =g+w (mod ¢). Since f, g and w each have short L2-norm, f *w and g * w
will also have somewhat short L2-norm, meaning that only a few coefficients of
f*w and gxw will fall outside of (—g/2, ¢/2], and therefore only a few deviations
in the mod-p congruences will occur. An attacker who does not possess a short
(a,b) satisfying axh = b in R, will have trouble minimizing the number of mod-p
deviations.

Signature verification: To avoid the forgery attacks presented in [9], verifica-
tion has become a rather complicated process involving up to 20 distinct steps,
detailed in [6] and [15], which fall into three broad categories: the Quartile Dis-
tribution tests, the Mod 3 Distribution tests, and the L2 Norm tests. In essence,
the verifier checks, respectively, that

1. the coefficients of s and t = sxh (mod ¢) have a roughly normal distribution;

2. the coefficients of s and ¢ deviating from m are few and have a certain
distribution; and

3. the L2 norms of s’ = p~!(s —m) (mod q), t' = p~1(t — m) (mod q) and
(s'|It") (concatenated) are below certain thresholds.

Since we do not focus on forgery attacks in this paper, we defer the details of
the verification process to Appendix A. On average, the signer has to run the
signing process two or three times to produce a valid signature.

4 Previous Attacks on NSS

In this section, we review some relevant known attacks against NTRUEncrypt
and previous NTRU-based signature schemes. This review will help us explain
our cryptanalysis of R-NSS, which will occasionally leverage pieces of the attacks
mentioned here.

4.1 Coppersmith-Shamir Attack

As with NTRUEncrypt, the security of R-NSS is claimed to be based on a hard
lattice problem. Coppersmith and Shamir [7] were the first to present a lattice-
based attack against NTRUEncrypt, an attack which is also relevant to R-NSS.
Let Log be the lattice generated by the rows of the following matrix:

Bes = [I(N) M } ; (5)

where Iy is the N-dimensional identity matrix. This lattice clearly contains
the vector (f]|g), since f * h = g (mod ¢). Moreover, for technical reasons [7], it
is highly probable that (f||g) is the shortest nonzero vector in this lattice (up
to rotation, sign, and excluding trivial vectors such as (1%, 1%V), the vector of all
1’s.) Therefore, recovering the private key is simply a matter of recovering the
shortest vector in L¢g, which we can presumably do using a lattice reduction
algorithm. This attack is very effective when N is small (e.g., 107).

The problem with this approach (and lattice attacks, in general) is that no
known lattice reduction algorithm is both very fast and very effective. More
specifically, the LLL algorithm is “polynomial-time” — i.e., it terminates in time
polynomial in the dimension m of the lattice — but, for high-dimensional lattices,
such as those used in NTRU-based schemes, it almost certainly will not find the
shortest vector. Rather, LLL only guarantees finding a vector that is no more
than 20m=1)/2 times as long as the shortest vector. Even though, in practice,
LLL performs significantly better than this worst case bound, its performance
is not sufficient for this lattice; we need the shortest vector or a wvery small
multiple thereof. Other lattice reduction algorithms can find shorter vectors, but
they naturally have greater time-complexity. The bottom line, based on current
knowledge and on extensive empirical tests run by NTRU [23], seems to be
that the time necessary to find (f||g) in Log grows at least exponentially in the
dimension of the lattice (2N). This apparently hard lattice problem of recovering
(fllg) from the 2N-dimensional lattice is claimed to underlie the security of both
NTRUEncrypt and R-NSS.

Remark 1. As mentioned previously, the fact that SVP is an NP-hard problem
for general lattices does not necessarily mean that finding short vectors in Log
is hard. May [20] exploited the specifics of NTRUEncrypt’s private key structure
to construct lower-dimensional “zero-run” lattices and “dimension-reducing” lat-
tices from which an attacker could quickly recover an NTRUEncrypt-107 private
key. Gentry [8] used a ring homomorphism from R to Z[X]/(X /4 —1) to “fold”
L¢s into a more manageable lattice of dimension 2N/d for N having a nontrivial
divisor d.

4.2 GCD Lattice Attack

Since reducing Leg does indeed appear to be infeasible, the natural inclination
of the cryptanalyst is to look for smaller lattices that contain the private key.

The authors of R-NSS mention one such lattice in [16]. They observe that if
an attacker is able to recover the values of several f * w’s in R — “unreduced”
modulo g — then f will likely be the shortest vector in the N-dimensional lattice
formed by the rows of the several M¢..,’s.

Recall from section 2.2 that, for any polynomial a, there is an equivalence
between the ideal (a) of a-multiples and the lattice generated by M,. Similarly,
the lattice spanned by the rows of M., and My, corresponds to the ideal
I = (f*wy, f*ws). Every polynomial in I is a multiple of f. Moreover, if (w)
and (wq) are relatively prime — i.e., there exist a,b € R with a xw; +b*xws =1
— then f € I, and we may say that GCD(f * wy, f * wo) = (f). This “lattice
attack” is, in fact, the standard ideal-GCD algorithm, and is among the lattice
ideal operations discussed in [2].

Given how the w; are produced in R-NSS, (f) often is indeed the GCD of
two unreduced signatures, and it is even more likely to be the GCD of several
unreduced signatures. Therefore, given a few unreduced signatures, we can con-
struct an N-dimensional lattice whose shortest vector is likely f. The authors
of R-NSS note that, although reducing this N-dimensional lattice is still not
a trivial problem for R-NSS parameters, it is much easier than reducing the
2N-dimensional L¢g, given the exponential relationship between dimension and
running time. R-NSS uses “masking” techniques to prevent recovery of f * w’s
in R to avoid this lattice attack. (In section 5 we show that recovering f * w’s is
nonetheless quite easy.)

4.3 Averaging Attack

The so-called “averaging attack” was first considered by Kaliski during collab-
oration with Hoffstein in the context of an early precursor to NSS (see patent
[12]). In this work, it was observed that in the ring R, the value f * f could be
obtained by an averaging attack. This attack was fatal, since in the scheme [12],
f itself is a palindrome (unlike in R-NSS), thus f * f = f2. There is an efficient
algorithm for taking the square root in R (see, e.g., [13]), so f * f revealed f.

In [16], the authors of R-NSS do mention this averaging attack, but also
remark that knowledge of f * f does not appear to be useful. See [16], [9], [21]
for a discussion of this and other ways in which the attacker may average a
transcript of signatures in such a way as to get information about the private
key.

Here is a description of how the averaging attack works. Suppose we can
obtain a set of unreduced f * w’s in R. Now, consider the average

T

A= (1)r) Z(f*f) * (Wi % W;) ...

i=1

For each i, (w;*w;)o = ||w;||?, which is a large positive quantity. However, for k #
0, (w; * W;)k has a random distribution of positive and negative quantities that
averaging essentially cancels out. Thus, as r increases, A, essentially converges

to a scalar multiple of f * f. This convergence is quite fast: after a few thousand

signatures a close estimate of f % f can be computed, meaning that we obtain
an estimate z such that for most coefficients, |z; — (f * f);| < 2. Even if reduced
signatures are used, with some corrections, there is still a convergence to f
£, albeit about 10 times as slow. Clearly, the more signatures, the better the
estimate. In section 6, we explain how this averaging attack may be combined
with a lattice attack to recover f x f quickly and completely.

5 Lifting the Signatures

In this section, we present our first (and arguably the most important) attack
with which we obtain R-multiples of the private key f. More specifically, we
assume that, as passive adversaries, we are given a transcript of legitimate sig-
natures {(m1,$1),...,(my,sr)}. Using this transcript and the signer’s public
key, we directly compute the following elements in R,:

{f*w; modg,...,[*w. modq} and {g+*w; modg,...,g*w, modgq},

where the w; are computed according to the signing process above. We will then
lift these signatures to the ring R, obtaining a list of multiples of f and g:

{f*wy,...,fxw.} and {g*xwi,...,g*xw,.},

which are “unreduced” modulo ¢. This is a devastating attack against R-NSS,
because undoing the ¢ modular reduction of the signatures allows us to use the
N-dimensional GCD lattice attack, described in section 4.2, rather than the 2/NV-
dimensional Coppersmith-Shamir attack, reducing the key recovery time by a
factor exponential in V. It also permits the other, more efficient attacks discussed
later in this paper.

5.1 The Principle

(From the signing procedure in the ring R,, we get the following equations for
each i:
f*w; =s;modq and gx*w; =t; mod q , (6)

f*w;=g*w; =m; +e; modp . (7)

If we knew e;, we would be able to compute f * w; and g * w; modulo pq via
the Chinese Remainder Theorem. We could then recover f *w; and g % w; over
R without too much difficulty, since almost all of the coefficients of f * w; and
g * w; will lie in the interval (—pq/2,pq/2).2
The use of e; in the signing process makes lifting the signatures much less
straightforward. Since e; will have about 20 nonzero coefficients for the sug-
gested parameters of R-NSS, we cannot simply guess e; from among (%)22°
2 See [7] for an analysis of the coefficient distributions of convolution products. The
key points here are that L2 norms || f||, ||g|| and ||w;|| are small, ||f % w;|| = || f||||w:]|
and the coefficients of f * w,; have a roughly normal distribution.

10

possibilities. Later, we will mention how specific properties of the signing pro-
cess make some possibilities much more probable than others, but even with
these refinements the guessing approach remains infeasible.

Instead, we will use an iterative approach that, at each step, attempts to im-
prove upon previous approximations. Let S; denote our approximation of f *w;,
and T; our approximation of g*w,;. We initialize S; and 7T; to be the polynomials
in R,, that satisfy

S;=s; modq and T; =t; mod q , (8)

S; =T, =m; mod p . (9)

Our approximations will have two different types of errors. First, the kth coeffi-
cients of S; and T; will be wrong if the kth coefficient of e; is nonzero. Second, a
coefficient of S; (resp. T;) may be correct modulo pg but incorrect in R if the cor-
responding coefficient of fxw; (resp. gxw;) lies outside the interval (—pg/2, pq/2].
On average, about 25 (out of 251) coefficients of our initial approximations will
be incorrect.
In refining our approximations, we begin with the following observation: For
any (4, 7),
(f xw;) = (g*w;) — (f*w;)*(g*w;) =0. (10)

Based on this observation, we would expect S; * T; — S; * T; to tend towards 0
as our approximations improve. In fact, this is the case. We can use the norms
nij = ||Si*T; —S;*T;| to decide what adjustments we should make, and to know
when our approximations are finally correct. The rest of the lifting procedure
is simply an elaboration of this basic idea, and one can imagine a variety of
different methods through which an attacker could use these norms to create an
effective lifting procedure. In our particular implementation against R-NSS, we
used the norms n;;, together with some R-NSS-specific heuristics, to create a
very fast lifting procedure that worked almost all the time with a transcript of
only four signatures.

5.2 Our Implementation of the Lifting Procedure

For each approximation pair (5;,7;), we computed a “norm product” with the
other approximation pairs according to the formula P; = [] i Thij Preferring
approximation pairs with higher norm products, we then picked a random pair
(Si, T;) to be corrected. For each coefficient position, we temporarily added or
subtracted certain multiples of ¢ to S; and T; (since the approximations are
already correct modulo ¢), and recomputed P;. With a little bookkeeping, this
step can be made extremely fast. We preserved the adjustment that reduced
P; by the greatest amount. Finally, we terminated this process when the norm
product of some approximation pair reached zero, at which point we would have
two correct approximation pairs.

We also used some heuristics based on specific properties of the signing pro-
cess to improve the performance. We make the observation that the coefficients

11

of (f * w;, g *w;) come from a probability distribution, which by the equations
above, is correlated to that of e; and the initial value of (S;, T;). Specifically, the
way in which e; is computed makes it highly probable that if the kth coefficient
of e; is nonzero, then the kth coefficients of the initial approximation pair (S;, T;)
will both be fairly small — e.g., in the range [—100, 100]. On the other hand, if
a coefficient of the initial S; or T; is off by a multiple of pg, then it is highly
probable that this coefficient is fairly large — e.g., outside the range [—100, 100].
Consequently, if corresponding coefficients of the initial S; and T; are both in
[—100,100], we might only consider adjusting these coefficients by +¢; and if
either of these coefficients is outside [—100, 100], we might only try adjusting by
—pq or pq (depending on whether the original coefficient was initially positive or
negative, respectively). In our implementation, we used precisely this heuristic
in the early stages of our lifting procedure. We would then “shift gears,” consid-
ering adjustments by other multiples of g so that we could catch low-probability
errors as well.

We note that not every adjustment made during the lifting procedure is actu-
ally a correction. Often, this procedure will make a previously correct coefficient
incorrect, and then switch it back later on. In other words, it behaves somewhat
like a “random walk”. This fact, together with the heuristic nature of the over-
all algorithm, admittedly makes the lifting procedure difficult to analyze. For
the specified parameters of R-NSS, however, it works quickly and reliably. For a
transcript of four signatures, it is able to lift two signatures 90% of the time in
an average of about 25 seconds (on a desktop computer). In the remaining 10%,
the number of errors never converges to zero. For three signatures, it still works
70% of the time, typically finishing in about 15 seconds.

6 Obtaining f * f

An important ingredient of the final algorithm is the product of f with its rever-
sal, f. In order to recover f * f in the context of R-NSS, we used a combination
of the averaging attack mentioned in section 4.3 and a lattice attack on f * f
noticed by the authors and Jonsson, Nguyen and Stern.

The lattice attack is a derivative of the Coppersmith-Shamir attack described
in section 4.2. Since sending a polynomial to its reversal is an automorphism,
(f* f)* (h*h) = (g *g) (mod q). This means that the vector (f x f||g * g) is
contained in the lattice L, o, generated by

Iy M, +
Bnorm = (V) h*h:| . 11
[0 gl (1)

This lattice has dimension 2N, but it has an (IV 4 1)-dimensional sublattice of

palindromes, which contains (f * f||g * §). Conceivably, recovering (f * f|lg * 7)
from this sublattice could give us useful information about f and g. However,

12

this attack fails for typical NTRU or NSS parameters, since (f * fllg * g) is
normally not the shortest vector.?

For R-NSS, we combine ideas from the above attack with the GCD attack in
4.2 and the averaging technique in 4.3. First, we use our unreduced signatures to
form the ideal (f*f) from a few unreduced signature products s%5 = fx* fxw;*w;,
exactly as described in Section 4.2. Then, we take the subring of (f* f) consisting
of palindromes, which forms a lattice of dimension (N +1)/2. In fact, this lattice
is generated by f* f, and (N —1)/2 vectors (X* + XV =F) x f x f. For the same
reason as above, f f might not be the shortest vector in the lattice. However,
we may use the averaging attack to obtain a good estimate ¢ of f * f, modify
the lattice to include ¢, and then use lattice reduction to obtain the (shortest)
vector t — f * f.* In practice, this attack is amazingly effective for two reasons:
the lattice problem is only (N + 1)/2 dimensional, and ||t — f * f|| will be much
less than ||f * f|| for even a wery poor estimate of t. We found that we needed
only 10 signatures to obtain a sufficiently accurate estimate t of f * f (even
though only a handful of coefficients in ¢ were actually correct). With these 10
signatures, we consistently recovered f % f in less than 10 seconds.

7 Orthogonal Congruence Attack

In this section, we describe a polynomial-time algorithm for recovering the pri-
vate key f from f % f and one other multiple of f, such as f % w, when w is
relatively prime to f. In other words, this algorithm requires f % f and a basis
By of the ideal (f). 5 This algorithm is quite surprising, and uses novel ideas
combining orthogonal lattices with number theoretic congruence arising from
the cyclotomic field Q({w).

The complete algorithm is rather complex, but here is a brief (and not entirely
accurate) sketch: We begin by choosing a large prime number P = 1 (mod N).
(For now, we defer discussing how large P must be.) Then, using f * f and our
basis for (f), we use a series of lattice reductions to obtain f~! x a for some
polynomial a, and a guarantee that |la|| < P/2. Using the congruence f£~1 =1
(mod P), we will be able to compute a (mod P) and hence a exactly, from which
we will be able to compute fF~1 exactly. We will then use this power of f to
recover f.

3 By the “Gaussian heuristic,” the expected length of the shortest vector in a lat-
tice of determinant d and dimension n is d'/"/n/(2me). For Lporm, this length is
\/gN/(me). On the other hand, since ||f|| > v/N in NSS and ||f * f|| > ||f||* (the
latter inequality following from (f * f)o = ||f||*), the norm of f * f is greater than
N and hence greater than the Gaussian heuristic, since N is typically chosen to be
greater than q.

* One could also use Babai’s algorithm to solve the closest vector problem (CVP).

® Yet another characterization of the algorithm is that it recovers f from B; and the
relative norm of f over the index 2 subfield of Q(¢n).

13

We describe this algorithm and the theory behind it in more detail below.
Our first task will be to find a tool that ensures that when LLL gives us f©~!xa,
there is a definite bound on ||a/|.

7.1 Orthogonal Lattices

Certain lattices possess a basis of N equal length, mutually perpendicular basis
vectors. We denote such lattices orthogonal lattices. Two lattices are called ho-
mothetic if up to a constant stretching factor, A, there is a distance preserving
map from one lattice to the other. That is, all orthogonal lattices are homothetic
to the trivial lattice Z%. Similarly, we define f to be an orthogonal polynomial
if the circulant matrix M/ is the orthogonal basis of an orthogonal lattice. We
are interested in orthogonal lattices because they possess a multiplicative norm
property.

We note that for randomly chosen polynomials ¢ and f, the norm is quasi-
multiplicative, || f xa| = || f]| - ||a||. However, if one of the polynomial factors, say
f, is orthogonal, then equality will hold

1f = all = LFI - llall - (12)

For general polynomials f, applying LLL to (f) is guaranteed to find a multiple
of f, say f *a, such that the norm || f x a|| is less than a specific factor times the
norm of the shortest vector in the lattice. In the case where f is orthogonal, we
can additionally bound ||a| by this factor, since || f * a|| = || f|| - ||a||. In the case
of LLL, this means that we can be certain that [a| < 2(N=1/2,

7.2 Using f * f to Construct an Implicit Orthogonal Lattice

What do we do when f is not an orthogonal polynomial, but our objective is
to find f * a with small ||a|| (given only f * f and lattice basis By of (f))? Of
course, we may apply LLL to By and just hope that the output vector f xa has
short a, but this may not work even if f is only slightly nonorthogonal®. This
section describes how we can accomplish this task by using knowledge of f * f
to tmplicitly define an orthogonal lattice.

Since By and Mj are both bases of (f), they are related by By = U - M;
for some unimodular matrix U. Notice that each row of By is of the form f * u;
where u; is the ith row of U. This means that the objective of finding f * a with
bounded ||a|| is equivalent to bounding the norms of the rows of U. So, in some
sense, we would like to apply lattice reduction to U. How can we reduce the rows
of U when we only know By = U - My, and not U itself?

Supposing that f is a not a zero divisor in R, we can also divide by f * f.
Allowing denominators in our notation, we let D = M (1/(F+F)) and compute

Bf-D-Bf =U-U", (13)

5 The notion of nonorthogonality is made precise with concept called orthogonality
defect.

14

which is the Gram matrix of our unknown unimodular matrix U. Although we
do not know U explicitly, U - U7 has all the information that LLL needs to know
about U in order to reduce it — namely, the mutual dot products u; - u; of each
pair of row vectors. We can therefore apply a Gram matrix version of LLL to
U -UT, which outputs the unimodular transformation matrix V, and the Gram
matrix of the reduced lattice: (V - U) - (V - U)T. By the LLL bound, the norms
of the rows of (the unknown) basis V - U will be bounded by 2(N=1/2, Now, we
can compute a new basis of (f) — namely, (V-U)- My =V - By — and be certain
that each row of this basis equals f xa; for [ja;|| < 2(V=1/2. Effectively, we have
reduced the orthogonal lattice defined by U, without even knowing an explicit
basis for it.

7.3 Galois Congruence

In addition to the orthogonal lattices technique, we use some interesting congru-
ences on the ring R. The first congruence states that for any prime P such that
P =1 (mod N),

ff=f (modP). (14)

This implies that for any f which is not a zero divisor” in Rp = Zp[X]/(XN —1)
that
ffF7'=1 (mod P) . (15)

We may generalize these equations to arbitrary primes P by using a Galois
Congugation function (written as a superscript) o(r) : R — R, defined by

F7O(@) = fla"). (16)

For any r not divisible by N, o(r) defines an automorphism on R. There are N—1
such automorphisms, since two values of r which differ by a factor of N define
the same automorphism. We call o(r) the rth Galois conjugation mapping, and
have the congruence

P =" (mod P) . (17)

For elementary proofs of equations 15 and 17 and their relationship with the the
Galois theory of Q((), we refer the reader to the Appendix E; for the relationship
with the the Galois theory of Q((), see Appendix D.

As mentioned above, our motivation for considering such congruences is that
given a multiple of f©~1, say f©~! % a, we may use the congruence f©=1 =1
(mod P) to conclude that

fflxa=a (mod P). (18)

Now, if a is so small that all of its coeflicients lie in the interval (—P/2, P/2],
then the representatives for f£~! x a (mod p) in this interval reveal a exactly.
Assuming that a is not a zero divisor in R, dividing the product by a then

7 See Appendix E for a discussion of the zero divisor issue in Rp.

15

yields the exact value of f~!. With this observation, we are in a position to
use orthogonal lattice theory with lattice reduction to obtain small multiples of
powers of f and thus exact powers of f.

However, there is a technical difficulty arising from the fact that LLL only
guarantees that ||a| < 2V =172, To ensure that a has coefficients in (—P/2, P/2],
P has to be quite large — about the same order of magnitude as 2(N=1)/2_ This
means that f©~! has bit-length exponential in N, which makes it impossible for
us to even store the value of this polynomial. Initially, this might appear to be
a fatal problem. It also indicates that the “brief sketch” given at the beginning
of Section 7 could not have been entirely accurate.

Fortunately, we will not need to work with f©~1 directly; it will be sufficient
for our purposes to be able to compute f£~! modulo some primes. As discussed
further in section 7.4, we can make such computations using a process similar
to repeated squaring. However, to recover f, we will need some power of f that
we can work with directly (unreduced). To solve this problem, we may choose
a second prime P’ =1 (mod N) with GCD(P — 1, P’ — 1) = 2N for which we
can compute f¥ =1 modulo some primes. Then, using the Euclidean Algorithm,
we may compute f2Y modulo these primes, and ultimately f?V exactly via
the Chinese Remainder Theorem. We may work with f2V directly, since its
bit-length is merely polynomial in N. A more elegant solution in Appendix F
computes f2V directly from fF~1 if GCD(P — 1,2N — 1) = 1. In Section 7.5,
we describe how to recover f from f2%.

7.4 Ideal Power Algorithms

In practice, it might be the case that smaller P would be sufficient, allowing us
to work with the ideal (f©~1!) directly, but some tricks are needed to handle the
very large primes P that the LLL bound imposes on us. Suppose we had the
chains of polynomials {v3 *7, ..., v2_; %7, } and {vo*7g, ..., v,—1*T—1}. Then,
we could make the following series of computations:

vg * D3 = (v] *07)% % (v1 *07) "2 * (v] *T3) (mod P) , (19)
v * T3 = (v ¥ T2)” * (v2 ¥ T2) "2 % (v ¥ T3) (mod P) , (20)

and so on, ending with the equation:

r—1

2wty = (0 #T)? % (U1 *Tro1) 2% (02, % T;) (mod P) . (21)

In other words, we could compute v * 7, (mod P) efficiently even though the
exponent 2" may be quite large. If we could use this approach to get véD oy
(mod P) where ||T;|| < P/2, then we could recover 7, exactly, and then we could
use the same chains of polynomials to compute U(IJD ~! modulo other primes.

In this section, we describe how to get such chains of polynomials so that
we can get modular data about ff~! from f * f and a basis By of (f). The
main tool that we use is the multiplication of ideals (see [2]), and we adapt this
technique to use the orthogonal lattice theory above. The algorithm described

16

in the paragraph above is essentially a repeated squaring algorithm, so we first
review how to multiply ideals, and in particular, obtain the ideal (f?) from the

ideal (f).

Remark 2. TIdeal multiplication in R: If A = (f) and B = (g) are principal ideals
generated as Z-modules by (f *ay,...,f*ay) and (g*b1,...,g*by,), then the
ideal product AB is generated as a Z-module by the n? elements of the set
{a; *bj * f * g}, which defines (f * g).

Note that we describe the ideals as modules — i.e., as the Z-span of a set of
polynomials (rather than by giving generators over R). This is because our al-
gorithms represent ideals as lattices — i.e., as lists of polynomials. We use ideal
multiplication as follows: Given the ideal (f) in terms of the basis By = U - My,

we can generate (f?) from the rows b; x b; = u; * u; * f2. Since we know f2 *?2,
we can use the orthogonal lattice method described in section 7.2 to obtain a
reduced basis B> = U’Mfz where the rows of U’ have norm less than 2(N—1)/2 8
Next, we pick a row of By> and name it f 2 x1. We can directly compute vy * 0y
and a basis for v1: U’ - M,,. At this point we can compute a basis for (v?) to
begin another iteration of this process. Thus, we have the chains of polynomials
previously introduced, and, with a modification to multiply some of the ideals by
(f), its natural generalization. (Note: vy represents f in the following theorem.)

Theorem 1. Polynomial Chains

Suppose vy is not a zero divisor in R = Z[X]|/(XN —1). Let k = > k;2" with
k; € {0,1} be an integer with r = |loga(k)|. Let P be a prime such that vy is not
a zero divisor in Rp. Then, given the input vy * vy and basis By of (vo), we may
compute, in time polynomial in r, N and the bit-length of the input, the chains:

kpe1 02— ko . ,,2 —
{vg" ™" *vg *T7,...,05° *v;_y * T, and

{UO*U_OM'WUT*I*H};

where for Vi > 0, no v; is a zero divisor in Rp, and ||v;|| < 20N=1/2. Using these
chains, we may compute v§ * v, (mod P) in polynomial time. If k = P —1 >
2INHD/2 with P = 1 (mod N), we may compute U, exactly, and thereafter use
the above chains to compute végfl (mod Q) in polynomial time for any prime Q
such that no v; is zero divisor in Rg.

Notice that the above chains are identical to those given in the toy example at
the beginning of this section, except that k is permitted not to be a power of 2.
Zero-divisor issues arise because, at times, certain polynomials are divided out,
as in the toy example, but all zero divisor issues are easily dealt with by using
determinant-based technique noted in Appendices E and F. For i > 0, we have
[|v:]] < 2(N=1/2 by the orthogonal lattice method described in section 7.2. This

8 In the worst case, this involves reduction of an N-dimensional lattice defined by
N? generators. This reduction would only have polynomial time-complexity, but
normally we will be able to do much better, since we will usually be easy to find far
fewer (on the order of N) polynomials that span the ideal.

17

norm bound and the polynomial running time of LLL underlie the polynomial
complexity of the algorithm. In the Appendix F, we write this algorithm in
terms of pseudocode in an effort to clarify its details as well as its polynomial-
time complexity. Now, we will use the algorithm embodied in Theorem 1 to
obtain f2V.

Theorem 2. Computing f>V

Assume f is not a zero divisor in R = Z[X]/(XN — 1). Then, given f x f and
basis By of (f), we may compute f2N in time polynomial in N and the bit-length
of f.

Proof. We choose primes P and P’, each greater than 2(V+1/2 with GCD(P —
1,P’ —1) = 2N and f is a zero divisor in neither Rp nor Rp: (using Dirichlet’s
theorem on primes in arithmetic progression and the fact that f may be a zero
divisor in Rg for only a finite number of primes @)). By Theorem 1, we may
compute two polynomial chains that will allow us to compute f~1 (mod 1)
and fP'=! (mod r;) in polynomial time for any prime ; such that no v; (in either
chain) is zero divisor in R,,. (We simply avoid the finite number of problematic
primes.) Applying the Euclidean algorithm, we compute f2~ modulo each r;,
and ultimately f2V exactly using the Chinese Remainder Theorem.

7.5 Computing f from f2&

Our final task is to compute the private key f from f2V¥. We use the following
theorem.

Theorem 3. Galois Polynomial
Given 2N and b € Z%, we may compute z = Fo0) b in time polynomial in b,
N and bit-length of f.

Proof. Let Py > 2||f7(=%) f%|| be a prime number such that P, = 2coN — b
for some integer co. Then, (f2V)> = f2 % fo = o= % (mod P;). Since
Py > 2||f7=0) f||, we recover z = f7(=Y) f¥ exactly.

Now, in terms of recovering f, we first note that 2V uniquely defines f only
up to sign and rotation — i.e., up to multiplication by £X%, the 2Nth roots of
unity in R. The basic idea of our approach is that, given 2V fixing f(¢) for one
(complex) Nth root of unity ¢ completely determines f(¢?) for all exponents d.
Then, we may use the N — 1 values of f(¢?), together with f(1) (which we will
know up to sign), to solve for f using Gaussian elimination. If we set —b to be
a primitive root modulo N, the polynomial z given in Theorem 3 will help us
iteratively derive the f(¢?) from f(¢) as follows:

FECEDTY = 2D /oYY (22)

Repeated exponentiation will not result in a loss of precision, since the value
may be corrected at each stage. Since —b is a primitive root modulo N, these
evaluations give us N — 1 linearly independent equations in the coefficients of f,
which together with f(1), allow us to recover the private key f completely, up
to sign and rotation.

it+1

18

8 Summary and Generalizations of R-NSS Cryptanalysis

For the reader’s convenience, we briefly review the main points of the attack. The
first two stages of the attack are fast in practice, but they are both heuristic and
have no proven time bounds. The lifting procedure lifts a transcript of signatures
from R, to R, obtaining unreduced f-multiples in R. The second stage uses
an averaging attack to approximate f * f, and then solves the closest vector
problem (CVP) to recover f * f exactly. The algorithm of the final stage, which
we have not fully implemented, uses output from the previous two stages to
recover the private key in polynomial time. By combining lattice-based methods
and number-theoretic congruences, the algorithm of the final stage can be used
to:

1. Recover f from f* f and a basis By of (f);
2. Recover f from only By when f is an orthogonal polynomial; and
3. Recover f/f from By whether f is an orthogonal polynomial or not.

We anticipate that this algorithm could be generalized to recover f given a basis
of (f) and the relative norm of f over an index 2 subfield where the degree-
2 extension is complex conjugation. In Section 9, we discuss another possible
generalization of this algorithm that may be an interesting area of research.

9 NTRUSign

NTRUSign was proposed at the rump session of Asiacrypt 2001 as a replace-
ment of R-NSS [11], and, as requested by the Program Committee, we provide
some preliminary security analysis. The scheme is more natural than previous
NTRU-based signature schemes, particularly in terms of its sole verification cri-
terion: the signer (or forger) must solve an “approximate CVP problem” in the
NTRU lattice — i.e., produce a lattice point that is sufficiently close to a message
digest point, a 14 Goldreich, Goldwasser and Halevi [10]. Similar to the GGH
cryptosystem, the signer has private knowledge of a “good” basis of the NTRU
lattice having short basis vectors, and publishes the usual “bad” NTRU lattice

basis:
| My M, _ vy M
Bpriv = [MF MG] Bpup = [0 qliny| -

Unlike GGH, these bases may be succinctly represented with only four polyno-
mials: (f, g, F,G) for the private basis, and h for the public basis. (Recall that
My denotes the circulant matrix corresponding to the polynomial f; see Section
2.) In terms of key generation, the signer first generates short polynomials f and
g and computes the public key as h = f~! % g (mod q), as in NTRUEncrypt or
R-NSS. Due to lack of space, we refer the reader to [11] for details on how the
signer generates his second pair of short polynomials (F,G), but we note the
following properties: 1) f* G — g« F' = g and 2) ||F|| and ||G|| are 2 to 3 times
greater than ||f|| and ||g]|-

19

To sign, the message is hashed to create a random message digest vector
(m1, mg) with mq, me € R,. The signer then computes:

Gxmi—Fsxmg=A+qgxC, (23a)

—g*xmi+ frxmo=a+qx*c, (23b)

where A and a have coefficients in (—¢/2, ¢/2], and sends his signature:
s=fxC+Fxc (modq) . (24)

The verifier computes ¢t = s * h (mod ¢) and checks that (s,t) is “close enough”
to (m1, me) — specifically,

|s —m1]|? + ||t — ma||* < Normbound . (25)

We can see why verification works when we write, say, s in terms of Equations
23a and 23b:
s=mi—(Axf4+axF)/q (modq), (26)

where ||A % f 4+ a x F'|| will be reasonably short since f and F' are short.

In the absence of a transcript, the forgery problem is provably as difficult as
the approximate CVP problem in the NTRU lattice. However, it is clear that
NTRUSign signatures leak some information about the private key. The map-
ping involution Z[X]/(¢, X~ — 1) sending m + s is not a permutation, and
the associated identification protocol is not zero knowledge (even statistically
or computationally). Below, we describe concrete transcript attacks using ideas
from our cryptanalysis of R-NSS. We have had fruitful discussions with NTRU
regarding these attacks, and they have begun running preliminary tests to de-
termine their efficacy. Based on these tests, some of these attacks appear to
require a very long transcript that may make them infeasible in practice. This
is a subject of further research. In any case, these attacks show that NTRUSign
cannot have any formal security property, since it is not secure against passive
adversaries.

9.1 Second Order Attack

Using Equation 26, we may obtain polynomials of the form (A * f + a x F)
(similarly, (A * g+ a * G)). Consider the following average:

r

Avgyrp(r) = (1/r) Z(ai x F+A;x f)x(a; %« F+ Ay = f) (27)

=(1/r) Z(ai * @) % (F + F) + (A; % A;) * (f * f) + other terms .
- (28)

The “other terms” will converge to 0, since A and a are uniformly distributed at
random modulo ¢ and, though dependent, have small statistical correlation. (See

20

Remark 3 below.) The explicit portion of the average will converge essentially
to a scalar multiple of f* f + F « I, for the same reasons as discussed in Section
4.3. Thus,

lim Avgss(r) =y(fx f+ F* F) . (29)

Because the signatures in a transcript are random variables, the limit converges
as 1/y/r where r is the length of a transcript. We may use this averaging to
obtain a sufficiently close approximation of f * f + F s F to obtain the exact
value by solving the CVP in the (N + 1)-dimensional lattice given in Equation
11 using lattice reduction. Thus, we recover a polynomial that is quadratic in
the private key, and we can obtain f*g+ F *G and g * g+ G * G in a similar
fashion.

Remark 3. One may artificially construct situations where (1/r)>°1_ a; * A;
does not converge to 0. For example, if we let f = F', then A; x f +a; x F =0
(mod ¢) basically implies A; = —a; and hence a; * A; = —a; *a;, the average of
which does not converge to 0. Conceivably, NTRUSign could be modified so as
to constrain f~1 * F' (mod ¢), but this would likely allow alternative attacks.

It is worth noting that these second order polynomials give us the Gram
matrix Bg;_iv - Bpriv:
By Byriv = [Mf MF] [Mf Mg} _ [Mf*?mf My 7rcoF
Mg Mg | [Mr Mg Mf*§+F*E Mg*§+G*E
This Gram matrix gives us the “shape” of the parallelepiped defined by B:Z;.i,u,
but the “orientation” of this parallelepiped is unclear. An interesting (and open)
question is: Can an attacker recover B,,;, from B;;FM-U - Bpriv and Bpyp = U -
Bpriv, where U is a unimodular matrix? We answered a similar question in the
affirmative in Section 7; we showed that an attacker, in polynomial time, can
recover My from Mf - My and U - My, where U is a unimodular matrix. We
have not found a way to extend the orthogonal congruence attack to solve the
NTRUSign Gram matrix problem, however, where the bi-circulant (rather than
purely circulant) nature of the matrices in question (such as By,,) destroys the
commutativity that our orthogonal congruence attack appears to require, but
this does not imply that the NTRUSign Gram matrix problem is necessarily
hard. We note that it would more than suffice to find an algorithm that factors
U-UT for unimodular U. (This factorization is unique up to a signed permutation
matrix.) Further research in this area would be interesting, if only because it is
relevant to NTRUSign’s security.

9.2 Second Order Subtranscript Attack

It is clear that the second order polynomials recovered above contain information
not contained in the public key, but using this information to create an effective
attack is not so straightforward. Our approach has been to use the second order
polynomials to recover, say, f * f, so that we may then apply the orthogonal

21

congruence attack to recover f. One way to get f * f is to use the following
subtranscript attack.

First, we notice that since ||F|| > || f|, the norm |4 % f 4+ a * F|| is dictated
more by ||a|| than by || A]|. More relevantly, for our purposes, an Ax f +ax F that
is longer than normal will usually have ||a]| > ||A||. This suggests a subtranscript
attack, including in Equation 27 only those polynomials A; x f + a; * F' for which
|A; % f 4+ a; * F|| is greater than some bound.? Then, we have:

Subtranscript: lim Avgy;(r) = v1(f * f) +y2(F * F) , (30)

for 71 < 79. Since this linear combination of f * 7 and F x F is distinct from
that in Equation 29, we may compute f * f and F % F. The convergence of this
subtranscript averaging will be affected by the proportional size of the subtran-
script, but more importantly, by the fact that ; may be only a few percentage
points greater than ~y, (in our preliminary experiments using the longest 50% of
the A;* f+a;*F’s). Further experiments are necessary to determine the effective-
ness of this attack. Another consideration is that in [11], a possible modification
of NTRUSign was proposed in which one chooses the transpose of By, to be
the private key. The basis vectors are then (f, F) and (g,G) with ||f]| = ||g]|
and || F|| = ||G||. Choosing the private basis in this way appears to defeat this
subtranscript attack.

9.3 Fourth Order Attack

An alternative way to get f*f is to use the following fourth order attack. Viewing
the average in Equation 27, one may consider the corresponding variance and
conclude, under the assumption of the statistical independence of a and A, that:

T T

lim (1/r)) (5 # spev)? = (1/r)B(Hm > (5% 87e0))> = yf # fx FxF . (31)

T—00 i—1 T—00 i1

The adjustment value of 3 depends on the scheme parameters n and ¢, and so
the above value may not be exactly the variance. The factor v also depends on
the scheme parameters, and is a constant that slows convergence by a factor
,YI—Q. This limit does converge more slowly than the second order averaging, but,
as above, we may use a close approximation in conjunction with the lattice of
Equation 11 to obtain the exact value. Preliminary tests show that it may not be
practical to obtain an error lower than the Gaussian estimate with a reasonable
number of signatures. Assuming we do obtain the value f * f * F x F, we may
use it in combination with (f * f + F x F)? to obtain (f * f — F % F)2, and
then f % f — I x F (using, perhaps, the algorithm given in Section 7.5). Then,
fxf+Fs«Fand fxf—FxFgiveus f*fand FxF.

9 This selection criterion might be refined, as by also considering the norm of A x -
a * f, which may be computed using the above second order polynomials.

22

9.4 Preliminary Conclusion

The approach of these initial attacks was to reduce the breaking problem to
the orthogonal congruence attack using the results of various averagings. We
showed how this could be done, but the practical feasibility of these attacks has
yet to be determined. In our experiments, we have found that the second order
attack is feasible; for example, by averaging 20000 signatures, an attacker may
obtain an approximation whose squared error is about 88, about 1/20 of the
squared Gaussian heuristic of the (IV + 1)-dimensional CVP lattice that would
be used to correct this approximation. Although we have not tested this CVP
lattice, we believe its reduction would be feasible. Alternatively, more signatures
could first be used to obtain a better approximation. We have also shown how
the security of NTRUSign rests on the hardness of several new hard problems.
These attacks will continue to be analyzed by the authors, NTRU corporation,
and the cryptographic community.

10 Acknowledgments

The authors would like to thank Burt Kaliski, Alice Silverberg and Yiqun Lisa
Yin for helpful discussions, Jakob Jonsson, Phong Nguyen, and Jacques Stern
for discussions and collaboration on the precursor of this article, and Jeffrey
Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph Silverman and William
Whyte, who have given us valuable feedback on our cryptanalysis, particularly
on our preliminary cryptanalysis of NTRUSign.

References

1. M. Ajtai, The shortest vector problem in Lo is NP-hard for randomized reductions,
in Proc. 30th ACM Symposium on Theory of Computing, 1998, 10-19.

2. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts
in Mathematics, 138. Springer, 1993.

3. H. Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in
Mathematics 138 ;1993.

4. Consortium for Efficient Embedded Security. Efficient Embedded Security Stan-
dard (EESS) # 1: Draft 1.0. Previously on http://www.ceesstandards.org.

5. Consortium for Efficient Embedded Security. Efficient Embedded Security Stan-
dard (EESS) # 1: Draft 2.0. Previously on http://www.ceesstandards.org.

6. Consortium for Efficient Embedded Security. Efficient Embedded Security Stan-
dard (EESS) # 1: Draft 3.0. Available from http://www.ceesstandards.org.

7. D. Coppersmith and A. Shamir, Lattice Attacks on NTRU, in Proc. of Eurocrypt
97, LNCS 1233, pages 52—61. Springer-Verlag, 1997.

8. C. Gentry, Key Recovery and Message Attacks on NTRU-Composite, in Proc. of
Eurocrypt 01, LNCS 2045, pages 182-194. Springer-Verlag, 2001.

9. C. Gentry, J. Jonsson, J. Stern, M. Szydlo, Cryptanalysis of the NTRU signature
scheme, in Proc. of Asiacrypt 01, LNCS 2248, pages 1-20. Springer-Verlag, 2001.

23

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

O. Goldreich, S. Goldwasser, S. Halevi, Public-key Cryptography from Lattice Re-
duction Problems, in Proc. of Crypto 97, LNCS 1294, pages 112-131. Springer-
Verlag, 1997.

J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman, W. Whyte,
NTRUSign: Digital Signatures Using the NTRU Lattice, December, 2001. Available
from http://www.ntru.com.

J. Hoffstein, B.S. Kaliski, D. Lieman, M.J.B. Robshaw, Y.L. Yin, Secure user iden-
tification based on constrained polynomials, US Patent 6,076,163, June 13, 2000.
J. Hoffstein, D. Lieman, J.H. Silverman, Polynomial Rings and Efficient Public
Key Authentication, in Proc. International Workshop on Cryptographic Techniques
and E-Commerce (CrypTEC ’99), Hong Kong, (M. Blum and C.H. Lee, eds.), City
University of Hong Kong Press.

J. Hoffstein, J. Pipher, J.H. Silverman, Enhanced Encoding and Verification Meth-
ods for the NTRU Signature Scheme, NTRU Technical Note #017, May 2001.
Available from http://www.ntru.com.

J. Hoffstein, J. Pipher, J.H. Silverman. Enhanced encoding and verification meth-
ods for the NTRU signature scheme (ver. 2), May 30, 2001. Available from
http://www.ntru.com.

J. Hoffstein, J. Pipher, J.H. Silverman, NSS: The NTRU Signature Scheme,
preprint, November 2000. Available from http://www.ntru.com.

J. Hoffstein, J. Pipher, J.H. Silverman, NSS: The NTRU Signature Scheme, in
Proc. of Eurocrypt '01, LNCS 2045, pages 211-228. Springer-Verlag, 2001.

J. Hoffstein, J. Pipher, J.H. Silverman, NSS: The NTRU Signature Scheme: Theory
and Practice, preprint, 2001. Available from http://www.ntru.com.

A.K. Lenstra, H-W. Lenstra Jr., L. Lovész, Factoring Polynomials with Rational
Coefficients, Mathematische Ann. 261 (1982), 513-534.

A. May, Cryptanalysis of NTRU-107, preprint, 1999. Available from
http://www.informatik.uni- frankfurt.de/~alex/crypto.html.

I. Mironov, A Note on Cryptanalysis of the Preliminary Version of the NTRU
Signature Scheme, IACR preprint server, http://eprint.iacr.org/2001/005.

P. Nguyen and J. Stern, Lattice Reduction in Cryptology: An Update, in Proc.
of Algorithm Number Theory (ANTS IV), LNCS 1838, pages 85-112. Springer-
Verlag, 2000.

J.H. Silverman, FEstimated Breaking Times for NTRU Lattices, NTRU Technical
Note #012, March 1999. Available from http://www.ntru.com.

J.H. Silverman, Invertibility in Truncated Polynomial Rings., NTRU Technical
Note #009, October 1998. Available from http://www.ntru.com.

L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics
83, 1982.

A Original NSS and R-NSS: The Details

This section is included for completeness, so that this paper has a complete
specification of R-NSS, and so the reader can compare the original NSS to R-
NSS, and see why R-NSS is not susceptible to previous attacks.

Al

Original NSS

Like R-NSS, NSS uses the parameters N, q, p, ds, dy and d,,, and polynomials
f,g and h, which play roughly the same role as in section 3.

24

Key Generation: The polynomials f and g are defined as f = fy + pf1 and
g = go + pg1 where fy and gy are publicly known small polynomials (typically
fo=1and go = 1—2X), and h, the public key, is computed so that f «h = g,
as in R-NSS.

Signing: A message representative m is computed and two masking polyno-
mials are selected at random, wy from L(dws, dws) and wy having at most 25
nonzero coefficients. A temporary polynomial w = m + wy + pws is computed,
and wsy is altered so that, for each coefficient 7, the expectation of w; is zero
(even conditional on any fixed value of m;: m; € {—1,0,1}). With the modified
w, the signer computes = f * w (mod ¢), and outputs the pair (m,s) as the
signature of m.

Verification: To verify (m, s), the verifier computes t = sx*h (mod ¢) and the
deviations Dev(s, fo * m) and Dev(t, go * m), as defined above in section 3, and
checks that the number of deviations in each is in the range [Din, Dmax|, which
is typically [55, 87].

A.2 Highlighted Differences
Here is a list and brief interpretation of the changes made in R-NSS

1. For key generation, the new secret key component u replaces the public fj
and gp.

2. During signing, w is calculated differently in R-NSS, using the inverse of «
modulo p.

3. The stronger verification conditions in R-NSS, such as [p~!(s — m)| < B,
|p~1(t —m)| < B, typically imply the simple deviation bounds of NSS.

4. The new distribution checks on s and t demand that they are almost normally
distributed.

A.3 Suggested Parameters and Verification Steps for R-INSS

Let (N,p,q) be (251,3,128). We take polynomials f € £(52,52), g1 € £(36,36),
ue L£(88,87), meL(80,80), and ze L(58,58). However, an “efficient version” of
R-NSS may set u to be a product of an element in £(7,6), with one in £(7,8),
both f and g to be a product of two elements in £(6,6), and m to be a product
of two elements in £(5,5), with one in £(4,4). The verification procedure defines
four quartiles and counts mod 3 deviations:

Quartile ranges: I; = (—64, —32], I = (—32,0], Is = (0,32], I, = (32, 64].
Devis = #{j : s; € Iu|s; —m; =1 mod p} + #{j : s; € I|s; —m; = —1
mod p}.

Devy s = #{j : s € I3|s; —mj; =1 mod p} + #{j : s; € Ir|s; —m; = —1
mod p}.

Similarly for ¢, and set Devsum; = Dev; s + Devy s, and Devsumy = Devy s +
Devy ;. With this notation we state the following:

25

Condensed Verification Criteria

Require Devsum, < 10.

Require Devsumsy < 18.

Require |(s',¢")] < 485.

Require |s'| < 360.

Require [¢'| < 360.

Require between 95 and 153 coefficients of s and t to be in quartile 1.
Require between 50 and 100 coefficients of s and t to be in quartile 2.
Require between 7 and 42 coefficients of s and t to be in quartile 3.
Require between 0 and 14 coefficients of s and t to be in quartile 4.

© 00N W=

B Statistical and Forgery Attacks

Here, we briefly summarize some attacks on the original version of NSS, and
highlight how improvements in R-NSS defeat them. Admittedly, these attacks,
by Gentry, Jonsson, Stern, and Szydlo [9], exploited specific weak features of NSS
rather than its core, allowing NSS to be, in effect, “patched.” Refer to Appendix
A for details on the previous version of NSS, and its differences from R-NSS.

The Forgery Attack provided a direct method of finding false signatures
that satisfied the chief verification criterion, namely: Dev(s, fo * m) < 87, and
Dev(t,go * m) < 87. The task was to find a pair of related polynomials (s, t)
that simultaneously satisfy the deviation requirements, as well as the congruence
t = sxh (mod ¢). Since s and t have 2N coefficients altogether, and the equation
t = sxh (mod ¢) imposes N linear constraints, there remain N degrees of freedom
with which to choose the coefficients of s and t. So setting s; = (fo * m); mod p
and t; = (go * m); mod p for any |N/2| coefficients of s and [N/2] coefficients
of t (i.e., about half of each), the remaining halves of s and ¢ are determined by
g = h* f, essentially left to chance. But the chosen half of s (resp. t) has no
deviations, and the remaining half will probabilistically deviate in about % of
the positions, overall about % of the coefficients of s (resp. t) will deviate. Since
%N ~ 84 < Dyax = 87, this technique will generate a valid forgery after only a
few iterations. See [9] for some improvements using lattice reduction to improve
the chances, and “quality” of the signature.

The Transcript Attack recovered the private key from a long transcript
(m;, s;) of signatures using correlations between these signatures and the private
key. For a very early version of NSS, the masking polynomials wy, and ws, were
chosen at random. Taking some m;’s so that the average m; was about 1, then
the average s; would be about f, the private key. About a thousand signatures
were needed. Now, conceptually, we can think of that attack as a blatant example
of how the coefficients fj, were jointly statistically dependent on the s;, and m;.
Choosing ws so that the average above was always 0 fixed this particular flaw,
but the coefficients of s still basically depended on the private key f, the message
m and the polynomials w; and wsy (which are not completely independent of m).

26

So, the same distribution concept holds: the coefficients of f depend on s in a
way which is not independent of m. We can see this directly by unraveling the
convolution arithmetic.

sip = Y felmy+vi;+pvay).
Jj+k=io

Now if we only take messages, say, m;,=1, then we can obtain the coefficient fy,
by looking at the s; for ig = jo+k mod N. It is not hard to see that s; and fy are
positively correlated when m, is always 1! Rather than attempting averaging, it
is more efficient to look at the whole distribution of s; on this transcript (which
depends on fi). With enough signatures one can tell which distribution the
samples are coming from: There are only 3 shapes: the ones for fp = —3, 0, or
3. After between 10,000 and 30,000 signatures once can usually guess correctly.
In this way, a transcript reveals the private key. See [9] for further details and
statistics on this approach.

The scheme was revised, giving us R-NSS. Once might loosely say that the
attacks addressed the lack of soundness and zero knowledge inherent in NSS.
Concretely, the revised version would seek verification criteria which would bet-
ter bind the private key to the message, while leaking much less information.
Moment balancing techniques were suggested in some of the technical notes,
e.g:[14], but the main clever idea that revived NSS was the introduction of the
new private key u component of f, as we introduced above when defining R-NSS.

With u, the modified scheme creates w such that the adversary knows a-priori
nothing about w mod p, where before it was nearly equal to m. This effectively
removed the dangerous correlation in the transcript attack[18]. Additionally, by
using v~ (mod p) to construct w, with the new signature scheme, knowledge
of f could be used to make (s —m)/p mod g very small. These types of norm
conditions are much stronger than the simple deviation criteria, are at least
related to hard lattice problems [18], but most important at the time, obviated
both of the attacks that appear in Asiacrypt ‘01.

Perhaps modified forgery attacks or more subtle transcript attacks would
work, but this paper addresses the more fundamental issues of R-NSS, namely
the mod-¢q reduction, and symmetry of the associated lattices.

C Cyclotomic Integers: Polynomials, Ideals, and Lattices

In this section we present some more of the background relevant to the funda-
mental algebraic structure behind NTRU and NSS: The ring R = Z[X]/(X N —1).
We refer the reader to any standard number theory text for further back-
ground. First, we notice that the polynomial (X~ — 1) factors into X — 1 and
XN=14 XN=1 4. .4 2+1, the latter of which is irreducible[25] when N is prime
and called the Nth cyclotomic polynomial. This induces the ring decomposition

R Zx Z[X]/(XN" 4+ ... +1). (32)

27

Projection onto the first factor is evaluation of the polynomial at 1, and for NSS,
plays a smaller role in the security. The second factor is also written Z({y), where
({n) is a primitive Nth root of unity — i.e, a solution to the cyclotomic polyno-
mial. This very well known ring is important, because it the ring of integers in
the cyclotomic field Q({n), which is a field extention of degree N — 1. Both the
structure of Z((x) and Q({x) are important for NTRU and NSS.

Lattices and Ideals: First, we recall the close relationship of polynomial rings
with lattices: If A is any ring of the form Z[X]/(G(X)) for some monic polyno-
mial G of degree n, then the elements of A may be represented as n-dimensional
vectors. The elements of A form an n-dimensional lattice isomorphic to Z".
Any sublattice S of A corresponds to an additive subgroup of A, naturally a
Z-module. A sublattice I of A which also has the property that for v € I and
r € A, the product v*r € I, corresponds to an ideal of A. For NSS, when dealing
with unreduced signatures, this ring is taken to be R, or Z((y), and most of the
lattices are principal ideals — that is, they correspond to ideals (f) and lattices
generated by M.

The ring of integers Z({n) form a Dedekind Domain, and have some prop-
erties in common with the usual integers Z. The concepts of factorization and
greatest common divisors must be expressed in terms of ideals in Z({y). There
is a unique decomposition of ideals into products of powers of prime ideals in
this ring, although there are many units in the ring. While £1 are the only units
in Z, Z({n) also contains the Nth roots of unity and infinitely many real units.
These real units may be mapped to a lattice in a % dimensional vector space,
generated by fundamental units.

Factorization: Not all ideals in the ring are principal ideals like (f). The Divisor
class group measures the fraction of ideals which are principal. For N = 251 this
divisor class group is very large [25] and for the rational integers Z it is trivial
(thus having prime factorization into elements; one need not consider ideals).
The related problem of finding the units and class number is a computationally
difficult lattice problem. The factorization problem of elements, ab € Z((w)
can be accomplished with prime factorization algorithms[2], but the best known
algorithms use a lattice with which has as many rows as the size of the class
group. For this reason, the large class group of Z({y) is cited as an obstruction
to factorization, and to some attacks on NSS and NTRU.

The unit group can be thought of as measuring the extent to which the map
f — (f) not unique, for (f) is equal to (uf) for any unit w. This contrasts
with the fact that the maps f — f2, and f — f % f only have kernel +1, and
the 2Nth roots of 1, respectively. Sometimes a lattice basis reduction algorithm
such as LLL may be able to find a generator of (f), especially when f itself has
smaller norm than most vectors in (f). For NSS, we can think of knowledge of
a polynomial f * f as the specification of a generator of (f) up to a 2Nth root
of unity — i.e, up to sign and rotation.

Given the prime factorization of ideals in Z((x), the greatest common divisor
(GCD) is also only defined up to a unit. So, given a,b, f € K such that a and b

28

have no ideal factors in common, we may compute

GCD(af,bf) = (f), (33)

but this will not necessarily give us the element f. However, also knowing f * f
allows us to specify f up to sign and rotation.

For published algorithms for ideal intersection, addition, multiplication, and
factorization of ideals, the ideal GCD, and a Euclidean algorithm for relatively
prime ideals, see [2] and [3].

D Galois Theory

In this section we summarize some relevant Galois theory of Q(¢n). Recall the
decomposition of R into to Z x Z({x). The field correspondent to the second
factor, K = Q(¢w), the Nth cyclotomic field, is a Galois extension of Q with
Galois group isomorphic to Z/(N — 1)Z. Representing elements of Q({x) as
polynomials, the automorphisms in the Galois group are the N — 1 elements
o(r) for r € {1,2,...,N — 1} defined by the mapping z — . In other words,
(f7O) (@) = f(a").

There is a subfield of Q({x) corresponding to every subgroup of the Galois
group, indexed by the factors of the integer N — 1. The largest such proper
subfield of Q((y) is, explicitly, L = Q(¢ + ¢~1). Every element in L is a real
number, and K is a quadratic extension of L with Gal(K/L) consisting of only
two elements: the identity and ‘complex conjugation’ o.

Conjugation in K — namely, o(—1) — corresponds to the reversal of a poly-
nomial in R. Since elements of L are fixed under conjugation, they correspond
to “palindromes” in R — i.e., the set of polynomials a such that a = @. Given
that for any k € K, ko (k) is a real number in L, a * @ is a palindrome for any
a € R.

E Proof of the Galois congruences

We want to compute the polynomials of the form fP mod p, so we use the basic
equation

)= fia'y =) fla™ =Y fie"? = f(a”) (modp). (34)

Where the coefficients are expanded, the p-multiple cross terms dropped, Fer-
mat’s little theorem applied, and lastly, the coefficients collapsed, producing the
general equation

7= ()"® (modp) , (35)
true for all primes p, where the Galois Conjugate (f)°(") of f in R, is defined by
(f7) (@) = f(a"). (36)

29

In the special case where p = N, we have 2V =1 so
N = f(1) (modN). (37)

For the case p = 1(modN), suppose that p does not divide the determinant:
0 = Det(My). Then, there is a polynomial g such that f % g = ¢, so considering
f * g now in the ring R,, we see that f is a unit in this ring, and we can finally
draw the conclusion:

P71 =1 (modp). (38)

Lastly, in this section we make a remark about the decomposition of
R—ZxZ[X]/(XN" ... +1). (39)

The congruence results above extend to the second factor, the ring of cyclotomic
integers Z(¢), namely the general equation fP~! = 1 (mod p) is to be inter-
preted as an equation in Z(¢), and the automorphisms o (b) are the natural au-
tomorphisms in the Galois Group Gal(Z(¢))/Z. Equation 38 for p = 1 (modN)
requires the assumption that p does not divide the discriminant, rather than the
determinant, and equation 37 f~ = f(1) (mod N) holds as is.

This observation can be useful, because Z(() is an integral domain, while R
is not. The lattice arguments would hold if the lattice L is replaced with the
lattice obtained by adjoining the vector 1V of N 1’s, and restricting to the sub-
lattice where the last columns is forced to have a zero coefficient. This effectively
reduces all polynomials by the polynomial X~ ~'+...+1, and thereby removing
the need to check polynomial evaluation at 1, and generally eliminating the zero
divisor complications of our ring R.

F Orthogonal Congruence Attack is Polynomial-Time

In this appendix, we give a more algorithmic treatment of our orthogonal con-
gruence attack, listing these algorithms in pseudocode, and sketch how its time-
complexity is polynomial in N and the bit-length of f. As a preliminary matter,
we assume that the bit-length of our input basis By for (f) is polynomial in
N and the bit-length of f. This is a reasonable assumption for R-NSS, because
when we use LLL to get By from {f *xws,..., f *xwy}, the bit-length of By will
be bounded polynomially by N and the bit-lengths of the f *w;’s, where k will
usually be a very small number (e.g., 2).

We describe the first algorithm of the attack below. Note that this algorithm
will compute f2" 7, (mod p) instead of fP~1+7, (mod p) for r = |log, p|, with
the understanding that computing the latter requires only minor adjustments
based on the binary representation of p — 1. Let vy = f.

Algorithm 1

Input: vy * 7g; basis By for (vg); prime p = 1 (mod N) with r = |logy,p| =
(N+1)/2.

30

Output: {v2+71,...,v2_ 7, } and {vo*Tp, . . ., vp_1%T,—1} with |Jv;|| < 2V-1)/2;
v3 * T, (mod p).

1. Set ' :=0.
2. While 7’ < r do
(a) Use B, to construct a set G of vectors that generates (v2). Let G =
H-M,p .
(b) Compute the Gram matrix H - HT =G - M, % -GT.

(c) Reduce the Gram matrix H - H” to get (A }{) (H)T for known A.
(d) Compute the basis (A-H)-M,2, = A-G of (v 2)). Note: the rows of A-H

are short.
(e) Pick, say, the jth row of A -G, call it v2 * U757 7. Note: D757 is the jth
row of A- H.
(f) Output v2 * V57
() fr'+1#r
— Compute vy/41 * U1 = (V2 * V1) * (02 * Vprgg) * (v * Tpr) 72
— Output vpr41 * V1.
— Compute (A-H)-M,, =A-G-M, /2*” -+ M2, - This is our
basis Byrq1 of (vpr41).
(h) Increment 7.
Set ' :=1; Set y := v x o7 (mod p).
4. While 7’ < r do
(a) Compute y := y? (mod p).
(b) Compute y := y * (v, * /) "2 % (v3 * Upr11) (mod p). At this point,
41
y=v¢ *T.31 (mod p).
(¢) Increment 7.
5. Output y.

@

Remarks: If we had computed v5~" * 7, (mod p) instead of v * T, (mod p),
we could have used the fact that v2~' =1 (mod p) to recover 7, (mod p), which
would give us 7, exactly since ||v;|| < p/2. We will have problems in step 4b if
any of the v; are zero divisors in R, but we can avoid this problem in step 2e
by choosing a row whose corresponding lattice ideal has a determinant that is
not divisible by .19 (We know that this is the case for at least one row, since
A - H defines the lattice Z".)

It should be clear that Algorithm 1 is polynomial-time with the possible
exception of steps 2a and 2c. Regarding step 2a, the failsafe way to get a gen-
erating set is to compute the ideals as described in section 7.4, in which the set
will consist of the N2 products b; * b; for b;,b; € B,,. Computing these products
is obviously polynomial-time, but the fairly large size of this set (N?) will slow
down step 2c. However, step 2c¢ will still be polynomial-time, since both H’s
dimension and the bit-lengths of H’s entries will be bounded polynomially in N.

10 See Appendix E for more on how zero divisorship relates to determinants of lattice
ideals.

31

Although this completes the proof that Algorithm 1 is polynomial-time, there
are also some practical considerations to address.

In practice, we have found that small subsets (on the order of N) of the
N? products above are often generating sets. For example, if b; = a; * v,» and
b; = a; * v where a; and a; are relatively prime, which will often be the case,
the a? and a? will also be relatively prime, and we can generate (v2) from the
2N row vectors of b7 and b3.

Another practical issue is that LLL usually finds vectors much shorter than
its worst-case guarantee — meaning that the v;’s in Algorithm 1 will usually have
norms much less than 2(N=1/2 This helps us in two ways. First, each lattice
reduction step will be faster, because the input bases will already be substan-
tially reduced. Second, fewer lattice reductions will be necessary, because we can
choose p smaller. In the future, we anticipate performing computer simulations
to determine the actual time it takes to recover an R-NSS private key. Below, we
give two more algorithms, for which we omit specific proofs of time-complexity.

Algorithm 2

Input: {0377, ..., v2_1 %0, } and {vg 70y, . . . , v,—1*V,—1} from above; D, exactly;
p above also satisfies ged(p — 1,2N — 1) = 1.
Output: v3V.

1. Let P, > 2||v3V|| be a prime number satisfying P, = —(2N — 1) (mod p—1)
“ie, PL=(p—1)e1 — 2N + 1.

2. Compute v%~ " +7, (mod P;) from the sequences {v3 71, ...,v2_, *7,} and
{vo *Tg,...,vp_1 * U1} generated in Algorithm 1.

3. From v}~ * v, (mod P;) and 7,, compute vg_l (mod P).

4. Compute (v?Her = o TENTY = 12N (1n6d Py). Since Py > 2[|v2N ||, v2V

(mod Py) gives v exactly.

Algorithm 3

Input: f2V.
Output: f, up to rotation and sign.

1. Compute the smallest positive odd integer b such that N — b is a primitive
root modulo N. (For example, b = 3 for N = 251 since 248 is a primitive
root modulo 251.)

2. Let Py > 2||f%(X) * f(XN~?)|| be a prime number satisfying P, = —b (mod
N) - i.e., P2 = 202N —b.

3. Compute (f2V)ez = fbx f2 = f(X) * f(XN~?) (mod P,). Since P, >
201 f2(X) * F(XNY), we get f2(X) * fF(XNV~?) exactly.

4. Let a be a complex Nth root of unity. Compute f2V(a).

5. Pick a 2Nth root of f2V(a) and call it f(«).

6. Iteratively compute f(a(N*b)T+1 mod N from f(a(N=b)" med N ysing the poly-
nomial f2(X) x f(XN=b).

7. Use the N — 1 values of f(a(N=0" med N) a5 well as f(1), to compute f.

32

