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Abstract. Naor, Pinkas, and Sumner introduced and implemented a
sealed-bid, two-server auction system that is perhaps the most efficient
and practical to date. Based on a cryptographic primitive known as obliv-
ious transfer, their system aims to ensure privacy and correctness pro-
vided that at least one auction server behaves honestly. As observed
in [19], however, the NPS system suffers from a security flaw in which
one of the two servers can cheat so as to modify bids almost arbitrar-
ily and without detection. We propose a means of repairing this flaw
while preserving the attractive practical elements of the NPS protocol,
including minimal round complexity for servers and minimal computa-
tion by players providing private inputs. Our proposal requires a slightly
greater amount of computation and communication on the part of the
two auction servers, but actually involves much less computation on the
part of bidders. This latter feature makes our proposal particularly at-
tractive for use with low-power devices. While the original proposal of
NPS involved several dozen exponentiations for a typical auction, ours
by contrast involves only several dozen modular multiplications.

The key idea in our proposal is a form of oblivious transfer that we
refer to as wverifiable prozy oblivious transfer (VPOT). The security of
VPOT is predicated in a provable manner on a collection of common
cryptographic assumptions, including the RSA assumption, quadratic
residuosity assumption, and the random oracle model.
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1 Introduction

Cryptography offers a broad range of tools for distributing trust among com-
puting entities in flexible and often unexpected ways. In an electronic auction
setting, for example, a foundational cryptographic procedure known as secure
function evaluation enables the submission and processing of sealed bids with-
out the presence of a single, trusted auctioneer. As secure function evaluation is
rather impractical in its general form, a large body of research, e.g., [1,5,11,17,



19, 24], has focused on tailoring cryptographic protocols specifically to achieve
efficient sealed-bid auction systems.

A recent architecture proposed and implemented by Naor, Pinkas, and Sum-
ner [20] represents substantial progress toward the goal of practical sealed-bid
auctioning with distributed trust. In their system, bidders submit encrypted bids
to a front-end server known as an auctioneer. With the involvement of a second,
back-end server known as an auction issuer, any type of sealed-bid auction may
be conducted, e.g., highest-bid auctions, Vickrey auctions, and so forth. The
architecture aims to distribute trust between the two servers in the following
simple model: If at least one server is honest, the bids of all participants will
remain private, and any auction outcome is assured to be correct. There is no
robustness, however, in the sense that either server can cause the protocol to
terminate. NPS report good scalability, claiming that their system can accom-
modate hundreds or even thousands of bidders with reasonable overhead. We
note that the computational requirement for bidders in their system is approxi-
mately one modular exponentiation per bit in a bid representation. See [20] for
further details.

As identified in a footnote in work by Jakobsson and Juels [19], however, the
NPS system has a serious flaw that permits tampering by one of the servers.
Although not explicated in [19], it is easy to see that the auction issuer can
modify any bit in any bid without detection. The underlying problem is a variant
introduced by NPS on a cryptographic primitive known as 1-out-of-2 oblivious
transfer (1-2 OT), as we now explain.

Basic 1-2 OT is a procedure involving two players, a Chooser and a Sender.
The Sender possesses a pair of values (¢, t1). We refer to these values throughout
our paper as tags. The Chooser elects to receive from the Sender one of these two
tags tp for b € {0,1}. The 1-2 OT procedure is oblivious in the sense that the
Sender learns negligible information about b. An additional privacy property of
1-2 OT that the Chooser learns negligible information about t1_y, i.e., the value
that she did not select. NPS consider a variant on 1-2 OT, called prozy oblivi-
ous transfer. This variant involves an intervening third party known as a Proxy,
who receives the value t; on behalf of the Chooser, but herself learns negligible
information about b and t1_;,. We provide details on the protocol below. While
proxy oblivious transfer accomplishes the goal for which it was designed, namely
privacy protection, it does not include any mechanism for verifiability. In par-
ticular, the proxy oblivious transfer protocol does not ensure that the Sender
transmitted ¢, as desired. In the NPS auction setting, in particular, the Sender
(auction issuer) can substitute the tag ¢1_p. This means that the auction issuer
can tamper with bids.

In this paper, we introduce a protocol called verifiable proxy oblivious trans-
fer (VPOT) that addresses the vulnerability in the NPS protocol. In principle,
introducing verifiability into proxy oblivious transfer is not difficult using basic
— and potentially expensive — cryptographic techniques such as zero-knowledge
proofs. Our contribution in the design of VPOT is a collection of techniques
that render the verification process computationally inexpensive and yet, at the
same time, provably secure. When VPOT is introduced into the NPS auction
protocol, it increases the computational burden on auction servers somewhat,
but actually results in much less computation for bidders. This is particularly
desirable given the fact that bidders in many settings may wish to employ low-
power, handheld devices. Thus, VPOT not only remedies the security flaw in
the NPS architecture, but renders the system even more practical.



1.1 Background: Two-party computation and the NPS protocol

Secure function evaluation (also known as secure multi-party computation) be-
gan with the work of Yao [25], and Goldreich, Micali, and Wigderson [15], and has
spawned an ever growing body of research papers. See [13] for a good overview
of early work. The general goal of secure multi-party computation is to enable
m players to apply a function F' to respective private inputs X;, Xs,..., X,
such that some subset of players learns F/(X1, X, ..., X,,), but no player learns
additional, non-negligible information. Privacy and robustness against active (in-
deed, adaptive) adversaries are possible to achieve provided that the adversary
controls at most a fraction of the players. Assuming the existence of a broadcast
channel, this fraction is 1/2; otherwise, it is 1/3. For some recent work repre-
senting state-of-the-art attempts to achieve practical multi-party protocols, see,
e.g., [8,18].

The two-player case of secure function evaluation is distinguished by its rela-
tive simplicity and practicality. The original secure function evaluation protocol
of Yao [25] treated this case, and remains an important tool even now. In con-
trast to more general techniques, in which field operations such as addition and
multiplication are the atomic unit of computation, the Yao protocol involves
direct computation on boolean gates. While this is a limitation in the general
case, many real-world protocols such as auctions involve intensive bitwise ma-
nipulation such that boolean circuits are in fact a natural form of representation
for the required functions. The Yao protocol is appealing for other reasons as
well. Provided that only one player is to learn the output, it is in fact possible
to execute the Yao protocol with only one-round of interaction, an observation
first set forth implicitly in [20] and explored in detail in [7]. While constant-
round secure function evaluation is possible for multiple players, it requires both
high overhead and the availability of a broadcast channel [3]. A model in which
both players in the Yao protocol learn the output of such computation in a fair
manner (given a passive trusted entity) is also possible, and is explored in [6].

Suppose that Alice and Bob wish to engage in the Yao protocol on respective
private inputs X4 and Xp such that Bob learns the output y = F(X 4, XB).
Alice constructs a “garbled” circuit representing F'. She sends this circuit to Bob,
along with a “garbled” representation of X 4. In order to evaluate the “garbled”
circuit, Bob additionally needs a “garbled” version of his input X . He obtains
this from Alice using basic 1-2 oblivious transfer (OT) [21], or some enhanced
variant. This is the component of the Yao protocol that we focus on in detail in
this paper. In the case where Alice may cheat, another important component in
two-player secure function evaluation protocols are proofs of correct construction
of the Yao circuits. A cut-and-choose protocol for this is proposed in [20], while
[7] explores use of general non-interactive proof techniques. (If Alice wishes Bob
to send y to her in such a way that she can verify its correctness, she need
merely embed a verification tag in her “garbled” version of F' in the appropriate
manner.)

Numerous variants of oblivious transfer have been considered and compared
in the literature [13]. Notions of combining bit commitment with oblivious trans-
fer in a theoretical setting to achieve a committed or verifiable oblivious transfer
are explored for example in [10] and [9]. These works explore theoretical ap-
proaches that treat oblivious transfer and bit commitment as black boxes, and
are thus necessarily expensive. An alternative approach proposed in the litera-
ture is one using a trusted initializer [22]. The key observation made by NPS in
their auction system design is that by involving a Proxy in the oblivious transfer
procedure, it is possible to expand application of basic Yao style two-server func-



tion evaluation in such a way that inputs may be accepted from an arbitrarily
large number of players, i.e., bidders, while the evaluation process is restricted
to two auction servers.

Briefly stated, the NPS construction is as follows. The auction issuer (again,
the back-end server) constructs a “garbled” representation of a function F' that
describes the auction protocol. The auctioneer (again, the front-end server) eval-
uates the circuit for F' using “garbled” inputs representing the bids. In order to
obtain the “garbled” input for a bit b in a given bid, it is necessary to invoke the
proxy oblivious transfer protocol. In this protocol, the bidder plays the role of
the Chooser, the auctioneer plays the role of the Proxy, and the auction issuer
plays the role of the Sender. The Sender transmits “garbled” inputs (¢, t1) for
the circuit corresponding to a ’0’ bit and a ’1’ bit in the bid. The Chooser selects
tp, which the Proxy receives through the transfer protocol. Having done this for
all bits in all bids, the Proxy is able to evaluate F' on the input bids and deter-
mine the outcome of the auction. The privacy properties of the proxy oblivious
transfer protocol ensure that the Proxy does not learn b or ¢1_; for any bit. The
Proxy therefore does not learn any bidding information and can only evaluate
F on correct bid amounts. Likewise, the Sender does not learn the bid amounts.
Only if the Proxy and Sender collude is this privacy guarantee breached.

NPS include some other basic security enhancements to the protocol. In
particular, for the auctioneer to ensure that the auction issuer has constructed F'
correctly, the two must engage in a cut-in-choose protocol. Thus, the auctioneer
must in fact evaluate multiple, independent circuits representing F'. We provide
more details below.

1.2 Our contribution: Verifiable proxy oblivious transfer (VPOT)

The failing in the NPS protocol is that the auction issuer can transmit t;_,
instead of t; without detection. To address this problem, we propose a proto-
col known as verifiable proxy oblivious transfer (VPOT). VPOT enables the
Proxy (auctioneer) to ensure that the Sender (auction issuer) sent ¢, as re-
quired. VPOT otherwise retains all of the privacy characteristics of proxy obliv-
ious transfer.

An simplified overview of VPOT is as follows. The Sender provides commit-
ments Cp and C; to tags tg and ¢; (respectively representing a ’0’ bit and ’1’ bit in
a bid). These commitments take the form of a randomly ordered pair (Cq,C1—4),
i.e., a is a randomly selected bit. The Sender also provides a commitment E[a] to
the ordering a. Observe that the triple (Co,C1, E[a]) binds the Sender to values
for to and ty.

As usual in a 1-2 OT protocol, the Chooser selects a value t; to be decom-
mitted by the Sender. The Chooser in fact splits this bit b into two shares bp
and bg such that b = bp ® bg. The Chooser sends the share bg to the Sender.
This is transmitted (via the Proxy) as a ciphertext E[bg]. She sends the share bp
to the Proxy, also in a specially committed form that we do not describe here.
It is the splitting of b into two shares that ensures privacy with respect to the
two auction servers (provided that there is no collusion).

Finally, the Chooser transmits to the Proxy a secret value x that enables the
Proxy to receive the selected tag t,. The Sender decommits ¢ for the Proxy, who
then checks the correctness of the decommitment.

In addition to careful protocol decomposition and ordering of steps, here is a
list of the more interesting cryptographic techniques used in the construction of



VPOT. While none is individually novel per se, our new constructions combine
them in a novel way, effectively providing a new fundamental building block
useful for securely extending traditional two-party techniques to a setting with
multiple contributors.

— Double commitment: The Sender’s commitment Ci(t) on tag ¢ in fact consists
of a pair of values (Y7,Y3). The first value, Y7, is the commitment on a key
or witness k. In particular here, Y; = H(k®), where the cubing operation
takes place over an RSA modulus provided by the Sender (as discussed in
more detail below). H here is a hash function (modelled as a random oracle
for security proofs on the system). Observe that as the hash of a cube, Y7 is
really a commitment within a commitment. It is for this reason that we refer
to Ci(t) as a double commitment. The second value of the commitment pair,
Y5, represents an encryption of ¢ under k. In particular, Yo = H(k)®t, where
@ denotes the bitwise XOR operator. Observe that knowledge of the witness
k is sufficient both to open the commitment and obtain ¢ and also to verify
that the commitment has been correctly opened. This double commitment
scheme may be seen to be both computationally binding and computationally
hiding under the RSA assumption, with the random oracle model invoked
for H.

— RSA-based oblivious transfer: Most oblivious transfer protocols designed for
practical use in two-party secure function evaluation, e.g., in [20, 2], employ
El Gamal-based encryption of tags [14]. The result is that the Chooser must
perform at least one exponentiation per 1-2 OT invocation. In contrast,
we introduce an RSA-based 1-2 OT scheme as the foundation for VPOT.
The result is that the Chooser need only perform one RSA cubing, i.e., two
modular multiplications, per 1-2 OT invocation. When employed in VPOT,
this idea reduces the work of the Chooser by over an order of magnitude
with respect to the proxy oblivious transfer protocol of NPS.

— Goldwasser-Micali encryption: The encryption function F in our brief de-
scription above is the Goldwasser-Micali cryptosystem [16]. Encryption in
this system takes place with respect to an RSA modulus n. A ’0’ bit is
encrypted as a quadratic non-residue over Z,,, while a ’1’ bit is encrypted
as a quadratic residue. The key property of this system is its additive ho-
momorphism. In particular, given encryptions E[bg] and E[b1] of bits by
and by respectively, the Proxy can non-interactively compute E[by @ b1] as
E[bo]E[b1]. Composition of commitments in this manner enables the Proxy
to obtain an efficiently checkable proof of correct decommitment from the
Sender, as we shall see. We sometimes refer to a Goldwasser-Micali cipher-
text as a quadratic-residue commitment, abbreviated QR-commitment. We
let E'[b] denote a Goldwasser-Micali encryption of (QR-commitment to) a bit
b. We adopt this notation for clarity, although it is rather loose, disregarding
as it does the probabilistic nature of the primitive.

To clarify presentation in the body of the paper, we introduce VPOT through
a series of successively refined constructions, beginning with a 1-2 OT protocol
involving commitment and then adding on the presence of a Proxy and then the
verifiability property.

1.3 Other work on auctions

In consequence of the difficulties involved in deploying standard general secure
function evaluation techniques, a number of other secure protocols have been



proposed in the literature that are specially tailored for auctions. One of the
earliest of these is the scheme of Franklin and Reiter [12]. This scheme is not
fully private, in the sense that it only ensures the confidentiality of bids until the
end of the protocol (although the authors mention a fully private variant). Some
more recent schemes include those of Harkavy, Tygar, and Kikuchi [17], Cachin
[5], Sako [24], Di Crescenzo [11], and Jakobsson and Juels [19]. The Harkavy et
al. scheme is fully privacy preserving, but involves intensive bidder involvement
[17], and is not easily adaptable to different auction types or to related protocols.
The scheme of Cachin involves two servers, and requires some communication
among bidders. At the end of the protocol, a list of bidders is obtained, but not
the bid amounts. The scheme of Di Crescenzo [11] requires no communication
between bidders, and has low round complexity, but involves the participation
of only a single server. The scheme of Sako [24] works on a different principle
from these others, involving opening of bids in what is effectively a privacy-
preserving Dutch-style auction. While efficient for small auctions, it involves
costs linear in the range of possible bids, and does not allow for extension to
second-price and other auction types. The Jakobsson and Juels [19] protocol aims
at streamlining general secure multi-party computation for functions that involve
intensive bitwise manipulation, of which auction protocols, as mentioned above,
are a good example. A very recent protocol is that of Baudron and Stern [1].
This protocol is rather expensive, and involves only a single server, with privacy
ensured under the condition that there is no collusion between the auction server
and any bidder.

Organization

Section 2 reviews some cryptographic building blocks required for our construc-
tion. In section 3, we introduce efficient methods to combine bit commitment
with oblivious transfer, and develop in detail the important new VPOT protocol.
We show how to apply VPOT to the problem of secure function evaluation in
section 4. In section 5, we discuss the motivating example: private auction com-
putations. In the appendix, we briefly provide technical details on the Yao circuit
constructions, discuss security objectives and assumptions, and provide an effi-
ciency analysis. Due to space constraints, we do not provide formal modeling or
proof outlines in this extended abstract.

2 Building Blocks and Background

We review several standard building blocks for our protocols. Further details
regarding these primitives may found in the literature. We let €y denote uniform,
random selection from a set. Details of the Yao construction may be found in
the appendix.

Private channels: We assume the use of private, authenticated channels be-
tween all three possible pairings of the Chooser, Proxy, and Sender. The private
channel between the Chooser and Sender involves the Proxy as an intermediary,
for the sake of protocol simplification. We assume that messages are authenti-
cated in a non-repudiable fashion. We do not devote attention to the crypto-
graphic elements underlying these channels. In practice, private channels may
be realized by way of, e.g., the Secure Socket Layer protocol (SSL) with supple-
mentary use of digital signatures.

RSA-based 1-2 OT: Recall from above that the aim of 1-2 OT is for the
Chooser to obtain a tag tp for b € {0,1} from the Sender, who possesses the



pair of tags (to,t1). The Chooser should not learn ¢;_p, and the Sender should
not learn b. Most of the proposed practical 1-2 OT protocols in the literature
rely on use of El Gamal encryption or some close variant. As an example, we
describe the proxy oblivious-transfer protocol of NPS in detail at the beginning
of section 3.

In this paper, we introduce a special, RSA-based 1-2 OT protocol. We do
not make direct use of the RSA cryptosystem as such in the construction of this
primitive. We do, however, employ the familiar RSA setup [23], which we briefly
review here. An RSA public key consists of an RSA modulus n = pq, where
p and ¢ are primes, and a public exponent e such that ged(e, d(n)) = 1. The
corresponding private key d is such that ed = 1 mod ¢(n). Our protocols involve
exclusive knowledge and use of a private RSA key d by the Sender.

As a first step in the 1-2 OT protocol, the Sender must provide the Chooser
with double commitments Cy = Cy,(tp) and C; = Cy,(t1) on tags to and #;
respectively. The Sender additionally selects an integer C' €y Z7%, which he sends
to the Chooser. The Chooser, wishing to receive tag tj, chooses an element x €y
Z* . If b = 0, the Chooser transmits (xq, 1) = (23, Cz3) to the Sender; otherwise,
she transmits (zg,z1) = (23/C,23). The Sender checks that z1/x¢ = C. If so,
he uses his private key to construct (2o, 21) = (x(l)/ Bko,x}/ ®k1), which he sends
to the Chooser. The Chooser then makes use of x to extract k; in the obvious
fashion. Given k;, the chooser can extract ¢, from C, as desired.

Lacking knowledge of the cube root C, the RSA assumption implies that
the Chooser cannot obtain kj_;. In the random oracle model, then, it may be
seen that t1_j; is hidden from the Chooser in a semantically secure manner. As
the Sender does not know for which element in the pair (z,z1) the Chooser
possesses the corresponding cube root, it may be seen that b is hidden in an
information-theoretic sense from the Sender. Our VPOT protocol is essentially
a variant on this basic 1-2 OT scheme.

As noted above, our choice of RSA for our protocols stems from a desire to
render computation by the Chooser (corresponding to the bidder in an auction
protocol) as efficient as possible. We employ e = 3, a common choice, in order
to render these computations as rapid as possible, although none of our results
depends on this fact.

Yao Circuit Evaluation: As discussed above, Yao circuit evaluation serves as
the cornerstone of our VPOT protocol, as it does for NPS. Informally, the Yao
construction encrypts an entire boolean function, using ciphertexts to represent
the 0 and 1’s in a table composing a “boolean gate”. It is easy to see how any
function with finite domain and range can be compiled into a circuit, namely a
finite set of interdependent boolean gates. Construction of Yao circuits is con-
ceptually straightforward for auction functions, which incorporate a collection of
">’ comparisons. We present details on Yao circuit construction in the appendix.

Goldwasser-Micali encryption: The concept of probabilistic encryption was
introduced [16] and elaborated on in [4] to set forth the notion of semantic
security in an encryption scheme. The basic scheme employs a Blum integer
n = pq; this is the product of two primes, where each prime is congruent to
3 mod 4. (To facilitate our security proofs, we assume that the Blum integer
employed here is not the same as the RSA modulus employed for 1-2 OT. In
practice, and to simplify our protocol descriptions, we believe that use of the
same modulus in both cases is acceptable.) The two primes constitute the private
decryption key. Encryption is bitwise: a ’0’ bit is encoded as a square modulo n,
and a '1’ bit as a non-square modulo n with Jacobi symbol 1. In other words, the
quadratic residuosity (QR) of a ciphertext indicates the value of the plaintext bit.



Knowledge of p and ¢ enables efficient determination of the quadratic residuosity
of an element in Z,.

The Goldwasser-Micali encryption scheme can be employed straightforwardly
as a commitment scheme for a player that does not know the factorization of
n. To decommit a commitment Cj as a ’0’ bit, a player provides a square root
of Cp modulo n; to decommit as a ’1’ bit, the player provides a square root
of —C}p modulo n. It is easy to see that the scheme is unconditionally binding.
Privacy is reducible to the so-called quadratic residuosity assumption. Recall
from above that a key element of this encryption scheme, and indeed, our reason
for employing it, is its useful additive homomorphism: E[bg|E[b1] = E[bo®b;]. We
use this to prove the value of the XOR of two committed bits without revealing
any additional information about the individual values of the bits themselves.

3 Verifiable Proxy Oblivious Transfer

As a basis for comparison, we begin by presenting details of the NPS proxy
oblivious transfer protocol, whose intuition we sketched above. In an initializa-
tion process, the Chooser and Sender agree on a cyclic group G of order w over
which computation of discrete logarithms is hard and an associated generator g,
as well as a random value C' €y G whose discrete log is unknown to any player.
As usual, we let b denote the choice of the bidder, the pair (o, t1), the tags held
by the Sender. The protocol is as follows [20]:

1. The Chooser selects a private key « € Z,,, and computes a pair (PK}, PK1_p)
= (¢®,C/g"), and sends PKj to the Sender via the Proxy. She sends z to
the Proxy.

2. The Sender computes PK; = C'/PKj. The Sender computes the pair (29, z1) =
(Epk,[p(to)], Epk, [p(t1)]), where Epk, denotes El Gamal encryption under
public key PK; and p denotes a suitable error-detection function. The Sender
transmits the pair (zo, z1) to the Proxy in a random order.

3. The Proxy attempts to decrypt both values in the pair using x. The Proxy
knows he has obtained ¢, when the error-detection function p shows that the
decryption is successful.

It may be observed that provided there is no collusion, neither the Sender
nor the Proxy can learn b. It may be shown that under the Decisional Diffie-
Hellman assumption, even if the Proxy and Chooser collude, they cannot learn
both ¢y and ¢;. The weakness in this protocol, hinted at above, is the fact that the
Sender can choose to send ¢, for b’ of its choice simply by transmitting (2o, z1) =
(Epxk,[p(ty)]s Epk, [p(ty)]). Even with the additional apparatus involved for the
NPS auction protocol, neither the Chooser (i.e., a bidder) nor the Proxy (i.e.,
the auctioneer) can detect this tampering, which permits arbitrary alteration of
bids.

We are now ready to remedy this problem by introducing our VPOT protocol.
For clarity of presentation, we build up to the full VPOT description in stages.
These stages correspond roughly to the addition of a commitment, a proxy, and
then a verifiability property. Due to space constraints, we provide only informal
descriptions of the security properties of each of these protocols.



3.1 Committed Oblivious Transfer (COT)

Committed oblivious transfer (COT) is a natural fusion of bit commitment and
1-2 oblivious transfer. The utility of tag commitment is evident when such tags
determine the behavior in subsequent protocol steps. Some existing solutions
to this problem include a protocol by Crépeau [10] that combines black-box
bit commitment with oblivious transfer by structuring multiple commitments to
have a special XOR relationship. Other solutions may make commitments that
are of a special form, such that the Sender may send, along with his encrypted
tags, a proof in zero knowledge that the tags he encodes correspond to his
commitments.

Terminology in the literature varies, so by committed oblivious transfer
(COT) we mean that the Sender commits his two tags to the Chooser prior
to expression of the Chooser’s selection. Our solution is straightforward, and is
based on the RSA-based 1-2 OT protocol described above. Note that in COT, no
cube roots need ever be extracted by the Chooser, who therefore need perform
only a small amount of computation. Secondly, as mentioned in section 1, we
employ a form of “double commitment” here. A commitment here consists of
the hash of a cube over the RSA modulus.

This two-party protocol involves a Sender and a Chooser. As part of the
setup, we assume that the Sender has a valid RSA key n = pq. We suppose
without loss of generality that e = 3 (where ed = 1 mod lem(p — 1,q — 1)). We
make use of a hash function H : Z* — {0,1}! for security parameter . (Note
that proof of the security of our construction requires application of the random
oracle model to H.) Recall that in our notation, for k € Z* and t € {0,1}, we
define the double commitment Cj(t) = (H(k?®), H(k) @ to). The protocol is as
follows:

1. The Sender chooses his desired tags to,t; €y {0, 1}, as well as keys ko, k1 €¢
Z*, and sends two double commitments Cy = C, (to) and C; = Cy, (t1) and
a random value C to the Chooser.

2. The Chooser chooses z €; Z}, and computes z3. If she wishes to receive
the first tag she computes zog = 2%; otherwise she computes 7o = 23/C. She
sends zo to the Sender.

3. On receiving zq, the Sender computes z1 = Czg. Using the private key d, he
computes 1y = m(l)/g and y; = x}/?’. He sends the pair (2o, 21) = (yoko, y1k1)
to the Chooser.

4. The Chooser first computes the cube of both zy and z; and checks that
H(23/x0) and H (2} /x1) are equal to the first element in Cy and C; respec-
tively. If she has chosen the first tag, she extracts ko = 2 /x; if she has chosen
the second, she extracts k1 = z1/x. She subsequently decommits tq or ¢1, as
desired.

Security Features:

— The Sender does not learn for which element of (x¢, ;) the Chooser knows
the cube root, so the Sender learns nothing about the choice of the Chooser.
This holds in an information-theoretic sense.

— Under the RSA assumption, the Chooser cannot feasibly compute the cube
root of C, so she cannot obtain the cube roots of both elements of (xg,x1).
In the random oracle model, the unselected tag is hidden in a semantically
secure sense from the Chooser.



— The Chooser knows from the check in the last step that the Sender has
correctly transmitted both ¢y and t;, even though she can extract only one
of them. In particular, under the RSA assumption and in the random oracle
model, it is infeasible for the Sender to transmit a tag incorrectly without
detection.

3.2 Committed Proxy Oblivious Transfer (CPOT)

Committed Oblivious Transfer may be extended to permit a Proxy to receive the
tag selected by the Chooser. We call this enhanced protocol Committed Proxy
Oblivious Transfer (CPOT). The security properties desired for the Chooser and
Sender are as in COT. For the Proxy, we want to ensure two privacy properties.
First, even though the Proxy receives a tag on behalf of the Chooser, the Proxy
should be unable to determine which tag he received. Second, the Proxy should
not learn the tag that was not selected by the Chooser. To ensure that the Proxy
does not learn which tag he received, the tags are sent in a random order. A
final property we seek in CPOT is the ability of the Proxy to verify that the
Sender has indeed sent both tg and ¢;. The setup is as in COT; the protocol is
as follows:

1. The Sender chooses his desired tags to,t; €y {0, 1}, as well as keys ko, k1 €¢
Z7, and sends two double commitments Co = (H (ko®), H (ko) ®to) and C; =
(H(k1*),H (k1) @ to) to the Proxy in a random order, along with and a
random value C €y Z;'.

2. The Proxy forwards C' to the Chooser.

3. The Chooser splits b uniformly at random into bits bp and bg such that
b = bp @ bs. She also selects x €y Z*. If bp = 0 he computes zo = a3;
otherwise, she computes zg = 23/C. She also computes v = El[bg].

4. The Chooser sends (zg,x) to the Proxy. She also sends (zg,v) to the Sender
(via the Proxy, if desired).

5. The Sender receives xg, computes x1 = Czg and then yg = :v(l)/

.Z‘}/B. He decrypts bg. If bg = 0, the Sender transmits the pair (zg, 21)
(yoko, y1k1) to the Proxy; otherwise he transmits the pair (yoki,y1ko)-

6. The Proxy first computes the cube of both zy and z; and checks that
H(23/x0) and H(z}/x1) match the first elements in Cy and C; respectively.
If 2 is the cube root of zg, he is able to extract k, = zo/2 and then decommit
to; otherwise, he extracts k, = z1 /2 and decommits ¢;.

3 and Y1

Security Features:

— The Sender learns no information about bp, and, under the quadratic resid-
uosity assumption governing the security of E, the Proxy does not learn bg.
It follows that the Sender or Proxy individually cannot determine the choice
b of the Chooser.

— The Proxy cannot feasibly compute the cube root of C' under the RSA
assumption, and therefore cannot learn the cube roots of both xy and x;.
In the random oracle model, thereofer, the unselected tag is hidden in a
semantically secure sense from the Proxy. Observe that this is true even if
the Proxy cheats or colludes with the Chooser.

— The Proxy can verify that the Sender has correctly transmitted both ¢y and
t1, even though he can extract only one of them.

— Note, however, that neither the Chooser nor the Proxy knows if the Sender
has cheated by reversing the roles of ¢y and tq, or equivalently, flipping the
bit bg.



This last property is similar to the weakness present in the NPS proxy obliv-
ious transfer protocol, namely the one that permits the Sender (auction issuer)
to tamper with bids. VPOT, as we shall now see, solves this problem by having
the Sender add an efficient proof that he has not reversed the order of the tags.

3.3 Verifiable Proxy Oblivious Transfer (VPOT)

The protocol described above, CPOT, has the important feature that the Sender
is forced to transmit both tg and ¢; through the OT protocol. As explained,
though, he may “flip the bit” b, i.e., send the tag t1_;, rather than the tag t;
requested by the Chooser.

VPOT detects this sort of cheating though use of a zero-knowledge proof
based on QR-commitment. The intuition is this: the Sender provides a pair
(Co,C1) of commitments to the tags tg and ¢1, in a random order. The Sender
also commits to an ordering a of these commitments. In particular, a = 0 if Cg
represents a commitment to £g (and C; represents a commitment of ¢7); other-
wise, a = 1. The Sender provides this bit a for the Proxy as a QR-commitment
of the form FE[a]. As in CPOT, the Sender obtains a share bg of b, the ciphertext
E[bs] being observed by the Proxy. The Proxy therefore can compute a com-
mitment to the bit ¢ = a ® bg; in particular, E[c] = E[a]E[bg]. If the Sender
provides correct decommitment information, the value ¢ will specify whether the
Proxy should be able to open Cy or Cy. In particular, if ¢ = 0, the Proxy should
be able to open Cp; otherwise the Proxy should be able to open C;. To prove
correct behavior, the Sender decommits ¢ for the Proxy by proving the quadratic
residuosity of E|c|. Observe that the bit ¢, since it is “masked” by the secret bit
a, does not reveal information about bg to the Proxy. Hence the Proxy does not
learn the bit b specifying the tag requested by the Chooser.

The following is the full VPOT protocol.

1. The Sender chooses his desired tags tg,t1 €y {0, l}l and also an integer
C ey Z:;

2. The Sender computes commitments Cy = Cg, (t,) and C; = Cg,__ (t1-a).
Let v = FEla], i.e., a QR-commitment of a. The Sender also computes a
commitment CO = H{[u] to ordering of (Cy,C;1). The Sender transmits the
pair (Co,C1) to the Proxy, along with CO.

3. The Chooser receives C' from the Proxy and splits b uniformly at random
into bits bp and bg such that b = bp @ bg. She also selects x €y ZF. If
bp = 0 she computes z¢ = z>; otherwise, she computes z = w?’/C. She also
computes v = E[bg].

4. The Chooser sends (zg, v, z) to the Proxy. She also sends (xg, v) to the Sender
(via the Proxy, if desired).

5. The Sender receives xy and computes 1 = Czg. He then computes yg =
xém and y; = x}/‘g. He decrypts bg. If bg = 0, the Sender transmits the
pair (z0,21) = (Yoko,y1k1) to the Proxy; otherwise he transmits the pair
(yok1,y1ko).

6. The Sender transmits u to the Proxy (undoing the outer commitment in
CO). The Sender then reveals ¢ = a®bg by decommitting uv = E[a]Elbs] =
E[c]. The decommitment of uv is provided as a value p such that p? = uv
if c = 0 and p? = —uw if ¢ = 1. The Proxy checks the correctness of these
decommitments.

7. The Proxy first computes the cube of both zy and z; and checks that
H(23/x0) and H(23/z1) are equal to the first element of Cy and the first



element of Cy, in either order. As a final step, the Proxy checks that he can
use x to open Cq if ¢ = 0 and C; if ¢ = 1. This check ensures that the Sender
decommitted in the correct order.

Critical Additional Property:

— The Proxy can verify that the Sender has correctly sent him ¢, for the bit
b selected by the Chooser. Assuming that the Sender and Proxy do not
collude, therefore, the Chooser can be assured that the Proxy has received
the correct tag .

4 Two-Server Secure-Function Evaluation

In this section we describe an architecture for secure computation based on Yao
circuits and VPOT. Due to lack of space, we cannot provide formal modeling
and proofs for our auction protocol in this paper. We briefly describe the security
requirements informally in the appendix. As above, we assume the availability
of private, authenticated channels among participating players.

4.1 Putting together VPOT and Yao circuits

We now combine the VPOT protocol with Yao circuit to construct a secure func-
tion evaluation protocol involving two servers (evaluators) and multiple contrib-
utors of input values. For consistency with our protocol descriptions above, we
refer to the two servers as the Proxy and the Sender. Our secure-computation
protocol is designed to evaluate functions on inputs contributed by an arbitrarily
large number m of players. We refer to these players as Choosers.

Our aim is to evaluate a function F' on the m inputs of the Choosers. The
Proxy and Sender together evaluate and publish the result of the function com-
putation, and also provide each player with a receipt to guarantee correctness.
The role of the Sender here is to construct Yao circuits and that of the Proxy, to
evaluate these circuits. To compute input tags for the Yao circuits, these servers
must process separate, parallel invocations of VPOT for every individual bit.

The complete function evaluation protocol is as follows:
Offline Steps

1. The Sender generates an RSA modulus n and publishes this for the VPOT
invocations in the current function evaluation session. (Note: It is in fact
critical that a new RSA modulus be published for each session so as to ensure
the privacy properties of VPOT across sessions.)

2. The Sender constructs N copies of Yao circuits to evaluate the function F. He
sends these circuits to the Proxy, with double commitments to the garbled
input tags, as in VPOT. He also publishes a lookup hash table enabling
Yao-output-to-plaintext translation.

3. The Proxy selects half of the circuits at random, and asks the Sender to
“open” them.

4. The Sender “opens” the selected circuits and sends the keys to all of their
committed garbled input tags. This enables verification of their correct con-
struction. Note that this constitutes half of a cut-and-choose proof, the re-
maining half involving verification of consistent output on the unopened
circuits.



5. The Proxy verifies that the “opened” circuits and committed input tags do
indeed calculate the correct function.

VPOT steps

1. The Choosers submit their inputs bitwise to the Proxy according to the
VPOT protocol.

2. The Proxy forwards these choices to the Sender according to the VPOT
protocol.

3. The Sender sends the garbled input tags according to VPOT for each input
bit, and also each of the N/2 unopened circuits.

4. If either the Proxy or Sender detects the presence of an ill-formed input by
a Chooser, this is proven to the other server. Together the two servers can
annul the input of any Chooser, provided that F' is suitably constructed.
Details are straightforward, and omitted here.

Circuit Evaluation

1. The Proxy checks the garbled tags against the commitments, and evaluates
the unopened N/2 Yao circuits.

2. The Proxy looks up the Yao circuit outputs in the lookup tables, and verifies
that the results of the N/2 trials are identical.

3. The Proxy publishes the output entries of the Yao tables, along with the
function output. If the entries and output are correct, then the Sender cer-
tifies the output.

We remark that the Proxy should not publish the garbled output strings if the
outputs are inconsistent. Such a situation only occurs if the Sender cheats, and
revealing the outputs might leak some information about input values. Once the
correct output values are published, the result will be verifiable by any outside

party.

5 Application to Auctions

The two-server secure-function evaluation scheme presented in the previous sec-
tion can be applied straightforwardly, of course, to create a sealed-bid auction
system. As auctions are our key motivating application for the work in this pa-
per, it is worth a brief, concluding discussion of the particular benefits of our
approach to auctions.

As explained above, our scheme in this paper addresses the flaw in the NPS
auction protocol [20]. The NPS protocol is privacy preserving, but, as already
mentioned, effectively operates (unbeknownst to the authors) under the assump-
tion that both the servers are honest. The flaw in this paper is simple: the sender
may flip or set constant the two tags which he sends in the oblivious transfer for
a given bit, e.g., he can send only ’0’ tags for a given bit submitted by a bidder.
This allows the Sender to change the bid of any bidder to any value that the
Sender chooses. Nonetheless, we believe that NPS offer a key insight in suggest-
ing a two-server model to exploit the potentially high computational efficiency
and low round complexity of the Yao construction. This insight represents an
important step toward the realization of practical, privacy-preserving auction
protocols.

The secure-function evaluation procedure that we propose in section 4 not
only fixes the flaw in the NPS protocol but, as already noted, has the addi-
tional benefit of substantially reducing the computation required by bidders. In
summary, then, our proposed architecture offers the following features:



1. Non-interactivity: Bidders submit bids in a non-interactive fashion. That is,
they present their bids to the servers, but need not participate subsequently
in the auction protocol except to learn the outcome.

2. Auction adaptability: Our auction protocol is readily adaptable with little
overhead to a range of auction types, such as highest-price auctions and
Vickrey auctions.

3. Full privacy: We characterize privacy in terms of a static, active adversary
that controls at most one server and an arbitrary number of bidders. The
only information revealed to such an adversary at the conclusion of the
protocol about the bids of any honest bidders is the outcome of the auction.
In a highest-price auction, for example, such an adversary learns only the
winning bid and the identity of the winning bidder.

4. Correctness: Any player can be assured of the correctness of the auction
execution assuming that the two auction servers do not collude.

5. Robustness: While we do not achieve robustness against failure by either of
the auction servers, the servers can eliminate any ill-formed bids and process
the remaining ones correctly.

6. Low round-complexity: The protocol involves only five communication passes;
this includes the offline cut-and-choose proof of correct Yao circuit construc-
tion.

7. High computational efficiency: Our protocol is highly efficient in terms of
computational requirements. For bidders, it is more so than any other cryp-
tographically based privacy-preserving auction scheme in the literature. The
requirement for a bidder in a typical auction would be several tens of modular
multiplications (as opposed to a comparable number of modular exponentia-
tions in NPS). The cost for the servers is about twice that in NPS. (While in
general it is desirable to shed server load in favor of computation on the part
of clients, the NPS protocol is so computationally intensive for clients as to
pose a likely bottleneck even for reasonably powerful handheld devices.)

The principal drawback of our scheme is that, like the NPS protocol, it does not
extend to a trust model involving more than two servers. Whether or not the
basic NPS scheme can incorporate multiple servers is an open research question.

We wish to emphasize that, given the succesful implementation experiments
of NPS, our proposed architecture is likely to be amenable to very practical
deployment in software. Thus we believe that our scheme holds good practical
promise. With this in mind, we provide a brief efficiency analysis in the paper
appendix.
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A Constructing Yao Circuits

Yao circuit construction: We now elaborate on the “garbled” circuit con-
struction of Yao [25] and Goldreich et al. [15] sketched above. We employ the
notation of [20]. Recall that the goal of player A in constructing such a circuit is

to

enable player B to be able to evaluate a function F(x 4,2p) on a secret input

xp without learning anything about the secret input z 4 of player A, apart from



the output of F'. The idea behind the construction is to represent F' as a circuit
composed of logical gates computing binary operators such as AND or NOT.
Each such gate is represented as a small logical table; each bit value in a table
is represented by a random-valued tag of length k bits, where k is a security
parameter. (In our construction, tags are drawn from Z, so as to fit with our
1-2 OT protocols.) Player B evaluates this representation of F' by performing
lookups in the logical tables. The output of one logical table, represented as a
tag, serves as input to the next logical table, according to the architecture of the
circuit. Indeed, we may think of tags as traveling along “wires” connecting the
logical gates of the circuit. Output tags are translated into bit values according
to a decoding table accompanying the Yao circuit representation.

Let us consider a gate that computes the binary logical operator g. Let b;
and b; denote the true (hidden) bit values on the two input wires ¢ and j of
some binary gate and b; = g(b;, b;) be the true (hidden) bit value of the output
wire for the gate. To hide these values, the circuit constructor selects binary
permutations m; : b; — ¢;, m; 1 bj — ¢, and m : by — ¢;. The effect of these
permutations is to map the input bit values b;,b; and the output bit b; into
respective random bit values ¢;, ¢;, and ¢;. In principle, if supplied with a logical
table on the garbled bit values, a circuit evaluator can now evaluate the gate
using the “garbled” bit values ¢; and c; and obtain a garbled output bit ¢;.

The problem with this simple form of garbling is that the evaluator can flip
the garbled input bit values ¢; and c;, yielding a false evaluation of the circuit and
thereby potentially extracting information that should remain concealed. Thus,
an additional component of the full garbling scheme for the gate in question is the
inclusion of six random tags Ki(bl), Kj(bj), and Kl(bl) for b;,bj,br, € {0,1}. Here,

K Z-(O) represents a ’0’ bit assignment to b;, Ki(l) represents a '1’ bit assignment
to b;, etc. In the full garbling scheme, the bit value b; on wire 4 is represented
by a pair < Ki(bq‘), ¢; >, and likewise for b; and b;.

It remains to show how to construct a garbled lookup table for the gate. This
lookup table contains four rows, each of the form:

(cirej) + E (®5) >[< Kz(g(bi’bj))’cz >],

<K o> <K e

where E is a symmetric encryption function of some appropriate form (typically
XORing the plaintext with < K(bZ),ci > P < K;bj),cj >). The idea here is

1
that the tags Ki(bi) and K](-bj) for bit values b; and b; “unlock” the tag for the
corresponding output bit of the gate, namely b; = ¢(b;, b;). The reader may easily
see how evaluation proceeds in this construction, and also how the construction
generalizes to all full boolean circuit. It is also straightforward to show that the
underlying bit values remain hidden to an evaluator; privacy is determined by
the security parameter k determining the length of the tags.

The only remaining piece of the construction is the initialization. In partic-
ular, we must show how the evaluating player B obtains the correct tags for the
bits composing z; that are fed to the input gates of the circuit. To ensure full
privacy, player A must provide these tags to player B so as to achieve two prop-
erties: First, the value x5 must remain hidden from player A; second, player B
must obtain only the correct tags for the bit values of x g. Both of these aims can
be accomplished by having player A send tags for a given input wire to player B
by way of a 1-2 OT. Say, for instance, that player B wishes to obtain tag KZ-(bi)
for his secret input bit b;. Player A simply engages with player B in a 1-2 OT on
the pair of tags < K;O),Ki(l) > in the obvious manner. (Yao [25] demonstrated



a 1-2 OT procedure based on the hardness of factoring, while Goldreich et al.
demonstrated one based on any trapdoor one-way permutation.)

Choose-and-cut proof of correct Yao circuit construction: Cut-and Choose-
style proofs employ a strategy of “spot checking”. In the NPS auction paper,
the authors introduce a simple cut-and-choose proof in which player A proves to
player B that she has constructed a garbled Yao circuit correctly. Briefly stated,
player A sends N independently garbled copies of the Yao circuit for function
F to player B. Player B asks player A to decommit a random set of half of the
commitments, i.e., to reveal all of the random tags and permutations. Player B
verifies that these are correctly constructed and then evaluates the remaining
N/2 garbled circuits on his secret input value zpg (doing 1-2 OTs independently
for each with player A). Provided that the output of all N/2 garbled circuits is
identical, player B accepts the output as correct. The probability of player A
successfully cheating is greater than 1/ (g ) by a probability negligible in k, the
bit length of the tags.

B Security Model Considerations

B.1 Security characteristics

We discuss the security in the context of the complete two-server computation
protocol. In this paper we omit proof sketches, but rather discuss the security
model, the key relevant assumptions, and the security aims.

Our aim is to achieve security within the standard cryptographic model of se-
cure multi-party computation. This involves m players who are assumed to share
an authenticated broadcast channel, and an adversary with resources polynomi-
ally bounded in all security parameters. Our model is somewhat unusual in that
there are only two players, the Sender, and the Proxy, performing most of the
computation, yet there are multiple players (Choosers) submitting inputs. For
this situation it is natural to consider an adversary who may corrupt up to all
but one of the Choosers, and either the Proxy or the Sender. in an active fashion,
i.e., the adversary gains access to their private information, and may wholly con-
trol their behavior. We assume in our security analysis in the appendix that the
adversary is static, that is, the adversary must choose in advance which players
she wishes to corrupt. This model represents our assumption that there is at
least one honest Chooser and that the Proxy and Sender do not collude.

In proving security, our aim is to show, by means of standard (although not
straightforward) simulator arguments, that that security in VPOT and the se-
cure function evaluation protocol are reducible to a few canonical cryptographic
assumptions:

1. The RSA Assumption. This is used with the arguments involving quadratic
residues modulo a Blum integer. (In fact, this latter depends for security
upon the weaker assumption of the hardness of factoring.)

2. The Quadratic Residuosity Assumption (QR-assumption). As mentioned above,

we consider only RSA moduli that are Blum integers.

The Random Oracle Model for hash functions.

4. Use of a digital signature scheme resistant, under the Random Oracle Model
for hash functions, to existential forgery by an adversary capable of mount-
ing an adaptive, chosen-message attack. This provides the non-repudiably
authenticated channels we require.

@



Due to lack of space for security proofs, we state here only our security objectives:

Privacy: An adversary as described above learns only non-negligible information
about the private values of honest players apart from the output of the function
F.

Correctness: It is infeasible for the adversary to cause the protocol to output
an incorrect result.

Robustness: We do not obtain robustness in the obvious sense that either the
Proxy or Sender may refuse to continue at any step, or equivalently be caught
cheating. Because the Choosers in the multi-party computation have a non-
interactive role, however, an adversary controlling Choosers alone cannot halt
the protocol execution. We therefore obtain robustness against the most common
and troublesome form of potential denial-of-service attack.

C Efficiency Considerations

In order to permit easy comparison with other protocols, for example that in
[20], we summarize here the computational requirements for the participants in
our proposed scheme.

C.1 Computational costs for VPOT

The protocol VPOT involves both offline and online calculations; the latter may
be considered of more practical relevance. A typical implementation might use
a 1024-bit RSA modulus with exponent 3. Disregarding the cost of hash func-
tions computations, which is relatively small, we observe that the Sender must
compute seven modular multiplications offline. Online, the Sender must calcu-
late three modular exponentiations. The Proxy has much less computational
expense: only five modular multiplications and two modular divisions. Best of
all, the Chooser need only calculate five modular multiplications per bit selec-
tion. Note that these are the costs for only one invocation of VPOT. A full
auction protocol will involve many, of course, as we now consider.

C.2 A typical auction

To provide a flavor of the resource requirements for our proposed architecture,
we summarize the computational requirements in a typical auction setting. We
omit the negligible cost of hash calculations, and count circuit evaluations as a
unit. We remark that there are optimizations applicable to both the arithmetic
and circuit evaluation.

In our example there are 10 bidders in the auction, the bids are 10 bits long,
and 10 circuits out of 20 remain after the cut-and-choose step. The Sender must
create the 20 circuits offline, and he can also calculate 10,000 of his modular
multiplications off-line. During the protocol, he must calculate 2000 modular
multiplications and 2000 modular exponentiations. The Proxy must evaluate
20 circuits accepting 100 inputs each, calculate 10,000 modular multiplications,
and 2000 modular divisions. About half of this effort can be done off-line before
bidding commences. Finally, the Choosers (bidders) need only perform at most
50 modular multiplications each in total to construct their bids. We exclude
overhead associated with private, authenticated channel establishment, as there
are many ways to implement this portion of the protocol, and it is independent
of our investigations in this paper.



